Skip to main content
Log in

Chaos Game Optimization: a novel metaheuristic algorithm

  • Published:
Artificial Intelligence Review Aims and scope Submit manuscript

Abstract

In this paper, a novel metaheuristic algorithm called Chaos Game Optimization (CGO) is developed for solving optimization problems. The main concept of the CGO algorithm is based on some principles of chaos theory in which the configuration of fractals by chaos game concept and the fractals self-similarity issues are in perspective. A total number of 239 mathematical functions which are categorized into four different groups are collected to evaluate the overall performance of the presented novel algorithm. In order to evaluate the results of the CGO algorithm, three comparative analysis with different characteristics are conducted. In the first step, six different metaheuristic algorithms are selected from the literature while the minimum, mean and standard deviation values alongside the number of function evaluations for the CGO and these algorithms are calculated and compared. A complete statistical analysis is also conducted in order to provide a valid judgment about the performance of the CGO algorithm. In the second one, the results of the CGO algorithm are compared to some of the recently developed fractal- and chaos-based algorithms. Finally, the performance of the CGO algorithm is compared to some state-of-the-art algorithms in dealing with the state-of-the-art mathematical functions and one of the recent competitions on single objective real-parameter numerical optimization named “CEC 2017” is considered as numerical examples for this purpose. In addition, a computational cost analysis is also conducted for the presented algorithm. The obtained results proved that the CGO is superior compared to the other metaheuristics in most of the cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Alatas B (2010) Chaotic harmony search algorithms. Appl Math Comput 216(9):2687–2699

    MATH  Google Scholar 

  • Alatas B (2011) ACROA: artificial chemical reaction optimization algorithm for global optimization. Expert Syst Appl 38(10):13170–13180

    Article  Google Scholar 

  • Alatas B, Akin E, Ozer AB (2009) Chaos embedded particle swarm optimization algorithms. Chaos Solitons Fractals 40(4):1715–1734

    Article  MathSciNet  MATH  Google Scholar 

  • Atashpaz-Gargari E, Lucas C (2007) Imperialist competitive algorithm: an algorithm for optimization inspired by imperialistic competition. In: 2007 IEEE congress on evolutionary computation. IEEE, pp 4661–4667

  • Awad NH, Ali MZ, Liang JJ, Qu BY, Suganthan PN (2016) Problem definitions and evaluation criteria for the CEC 2017 special session and competition on single objective bound constrained real-parameter numerical optimization. Technical report, Nanyang Technological University, Singapore

  • Awad NH, Ali MZ, Suganthan PN (2017) Ensemble sinusoidal differential covariance matrix adaptation with Euclidean neighborhood for solving CEC2017 benchmark problems. In: 2017 IEEE congress on evolutionary computation (CEC). IEEE, pp 372–379

  • Azizi M, Ejlali RG, Ghasemi SAM, Talatahari S (2019a) Upgraded whale optimization algorithm for fuzzy logic based vibration control of nonlinear steel structure. Eng Struct 192:53–70. https://doi.org/10.1016/j.engstruct.2019.05.007

    Article  Google Scholar 

  • Azizi M, Ghasemi SAM, Ejlali RG, Talatahari S (2019b) Optimal tuning of fuzzy parameters for structural motion control using multiverse optimizer. Struct Des Tall Spec Build 28(13):e1652. https://doi.org/10.1002/tal.1652

    Article  Google Scholar 

  • Azizi M, Ghasemi SAM, Ejlali RG, Talatahari S (2020) Optimum design of fuzzy controller using hybrid ant lion optimizer and Jaya algorithm. Artif Intell Rev 53(3):1553–1584. https://doi.org/10.1007/s10462-019-09713-8

    Article  Google Scholar 

  • Basturk B (2006) An artificial bee colony (ABC) algorithm for numeric function optimization. In: IEEE swarm intelligence symposium, Indianapolis, IN, USA, 2006

  • Beyer HG, Schwefel HP (2002) Evolution strategies—a comprehensive introduction. Nat Comput 1(1):3–52

    Article  MathSciNet  MATH  Google Scholar 

  • Cheng MY, Prayogo D (2014) Symbiotic organisms search: a new metaheuristic optimization algorithm. Comput Struct 139:98–112

    Article  Google Scholar 

  • Chu SC, Tsai PW, Pan JS (2006) Cat swarm optimization. In: Pacific Rim international conference on artificial intelligence. Springer, Berlin, pp. 854–858

  • Dorigo M, Maniezzo V, Colorni A (1996) Ant system: optimization by a colony of cooperating agents. IEEE Trans Syst Man Cybern B Cybern 26(1):29–41

    Article  Google Scholar 

  • Du H, Wu X, Zhuang J (2006) Small-world optimization algorithm for function optimization. In: International conference on natural computation. Springer, Berlin, pp 264–273

  • Eberhart R, Kennedy J (1995) A new optimizer using particle swarm theory. In: MHS’95. Proceedings of the sixth international symposium on micro machine and human science. IEEE, pp 39–43

  • Erol OK, Eksin I (2006) A new optimization method: big bang–big crunch. Adv Eng Softw 37(2):106–111

    Article  Google Scholar 

  • Formato RA (2007) Central force optimization. Prog Electromagn Res 77:425–491

    Article  Google Scholar 

  • Gandomi AH, Alavi AH (2012) Krill herd: a new bio-inspired optimization algorithm. Commun Nonlinear Sci Numer Simul 17(12):4831–4845

    Article  MathSciNet  MATH  Google Scholar 

  • Gandomi AH, Yang XS, Talatahari S, Alavi AH (2013a) Firefly algorithm with chaos. Commun Nonlinear Sci Numer Simul 18(1):89–98

    Article  MathSciNet  MATH  Google Scholar 

  • Gandomi AH, Yun GJ, Yang XS, Talatahari S (2013b) Chaos-enhanced accelerated particle swarm optimization. Commun Nonlinear Sci Numer Simul 18(2):327–340

    Article  MathSciNet  MATH  Google Scholar 

  • García S, Molina D, Lozano M, Herrera F (2009) A study on the use of non-parametric tests for analyzing the evolutionary algorithms’ behaviour: a case study on the CEC’2005 special session on real parameter optimization. J Heuristics 15(6):617

    Article  MATH  Google Scholar 

  • Geem ZW, Kim JH, Loganathan GV (2001) A new heuristic optimization algorithm: harmony search. Simulation 76(2):60–68

    Article  Google Scholar 

  • Glover F (1986) Future paths for integer programming and links to artificial intelligence. Comput Oper Res 13(5):533–549

    Article  MathSciNet  MATH  Google Scholar 

  • Hansen N, Müller SD, Koumoutsakos P (2003) Reducing the time complexity of the derandomized evolution strategy with covariance matrix adaptation (CMA-ES). Evol Comput 11(1):1–18

    Article  Google Scholar 

  • Hatamlou A (2013) Black hole: A new heuristic optimization approach for data clustering. Inf Sci 222:175–184

    Article  MathSciNet  Google Scholar 

  • He X, Huang J, Rao Y, Gao L (2016) Chaotic teaching-learning-based optimization with Lévy flight for global numerical optimization. Comput Intell Neurosci 2016:1–12

    Google Scholar 

  • Holland JH (1992) Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence. MIT Press, Cambridge

    Book  Google Scholar 

  • Jamil M, Yang XS (2013) A literature survey of benchmark functions for global optimization problems. arXiv preprint arXiv:1308.4008

  • Jamil M, Yang XS, Zepernick HJ (2013) Test functions for global optimization: a comprehensive survey. In: Swarm intelligence and bio-inspired computation. Elsevier, Amsterdam, pp 193–222

  • Jordehi AR (2014) A chaotic-based big bang–big crunch algorithm for solving global optimisation problems. Neural Comput Appl 25(6):1329–1335

    Article  Google Scholar 

  • Kaedi M (2017) Fractal-based algorithm: a new metaheuristic method for continuous optimization. Int J Artif Intell 15(1):76–92

    Google Scholar 

  • Kaur G, Arora S (2018) Chaotic whale optimization algorithm. J Comput Des Eng 5(3):275–284

    Google Scholar 

  • Kaveh A, Khayatazad M (2012) A new meta-heuristic method: ray optimization. Comput Struct 112:283–294

    Article  Google Scholar 

  • Kaveh A, Mahdavi VR (2014) Colliding bodies optimization: a novel meta-heuristic method. Comput Struct 139:18–27

    Article  Google Scholar 

  • Kaveh A, Talatahari S (2010) A novel heuristic optimization method: charged system search. Acta Mech 213(3–4):267–289

    Article  MATH  Google Scholar 

  • Kaveh A, Sheikholeslami R, Talatahari S, Keshvari-Ilkhichi M (2014) Chaotic swarming of particles: a new method for size optimization of truss structures. Adv Eng Softw 67:136–147

    Article  Google Scholar 

  • Kaveh A, Dadras A, Montazeran AH (2018) Chaotic enhanced colliding bodies algorithms for size optimization of truss structures. Acta Mech 229(7):2883–2907

    Article  MathSciNet  MATH  Google Scholar 

  • Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Optimization by simulated annealing. Science 220(4598):671–680

    Article  MathSciNet  MATH  Google Scholar 

  • Koza JR (1992) Genetic programming: on the programming of computers by means of natural selection, vol 1. MIT Press, Cambridge

    MATH  Google Scholar 

  • Kumar A, Misra RK, Singh D (2017) Improving the local search capability of effective butterfly optimizer using covariance matrix adapted retreat phase. In: 2017 IEEE congress on evolutionary computation (CEC). IEEE, pp 1835–1842

  • Liang JJ, Suganthan PN, Deb K (2005) Novel composition test functions for numerical global optimization. In: Proceedings 2005 IEEE swarm intelligence symposium, 2005. SIS 2005. IEEE, pp 68–75

  • Liang F, Xiang JL, Zhao N (2006) Chaos-based differential evolution algorithm. Comput Simul 10:2378

    Google Scholar 

  • Mirjalili S (2015) Moth-flame optimization algorithm: a novel nature-inspired heuristic paradigm. Knowl Based Syst 89:228–249

    Article  Google Scholar 

  • Mirjalili S (2016) SCA: a sine cosine algorithm for solving optimization problems. Knowl Based Syst 96:120–133

    Article  Google Scholar 

  • Mirjalili S, Lewis A (2016) The whale optimization algorithm. Adv Eng Softw 95:51–67

    Article  Google Scholar 

  • Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69:46–61

    Article  Google Scholar 

  • Mirjalili S, Mirjalili SM, Hatamlou A (2016) Multi-verse optimizer: a nature-inspired algorithm for global optimization. Neural Comput Appl 27(2):495–513

    Article  Google Scholar 

  • Mirjalili S, Gandomi AH, Mirjalili SZ, Saremi S, Faris H, Mirjalili SM (2017) Salp swarm algorithm: a bio-inspired optimizer for engineering design problems. Adv Eng Softw 114:163–191

    Article  Google Scholar 

  • Moghaddam FF, Moghaddam RF, Cheriet M (2012) Curved space optimization: a random search based on general relativity theory. arXiv preprint arXiv:1208.2214

  • Momin JAMIL, Yang XS (2013) A literature survey of benchmark functions for global optimization problems. J Math Model Numer Optim 4(2):150–194

    MATH  Google Scholar 

  • Moscato P (1989) On evolution, search, optimization, genetic algorithms and martial arts: towards memetic algorithms. Caltech concurrent computation program, C3P report, 826, 1989

  • Nakib A, Ouchraa S, Shvai N, Souquet L, Talbi EG (2017) Deterministic metaheuristic based on fractal decomposition for large-scale optimization. Appl Soft Comput 61:468–485

    Article  Google Scholar 

  • Pham DT, Ghanbarzadeh A, Koc E, Otri S, Rahim S, Zaidi M (2005) The bees algorithm. Technical note. Manufacturing Engineering Centre, Cardiff University, Cardiff

    Google Scholar 

  • Rao RV, Savsani VJ, Vakharia DP (2011) Teaching–learning-based optimization: a novel method for constrained mechanical design optimization problems. Comput Aided Des 43(3):303–315

    Article  Google Scholar 

  • Rashedi E, Nezamabadi-Pour H, Saryazdi S (2009) GSA: a gravitational search algorithm. Inf Sci 179(13):2232–2248

    Article  MATH  Google Scholar 

  • Rodrigues EO, Liatsis P, Satoru L, Conci A (2018) Fractal triangular search: a metaheuristic for image content search. IET Image Proc 12(8):1475–1484

    Article  Google Scholar 

  • Saha S, Mukherjee V (2018) A novel chaos-integrated symbiotic organisms search algorithm for global optimization. Soft Comput 22(11):3797–3816

    Article  Google Scholar 

  • Salimi H (2015) Stochastic fractal search: a powerful metaheuristic algorithm. Knowl Based Syst 75:1–18

    Article  Google Scholar 

  • Sallam KM, Elsayed SM, Sarker RA, Essam DL (2017) Multi-method based orthogonal experimental design algorithm for solving CEC2017 competition problems. In: 2017 IEEE congress on evolutionary computation (CEC). IEEE, pp 1350–1357

  • Sayed GI, Khoriba G, Haggag MH (2018) A novel chaotic salp swarm algorithm for global optimization and feature selection. Appl Intell 48(10):3462–3481

    Article  Google Scholar 

  • Shah-Hosseini H (2011) Principal components analysis by the galaxy-based search algorithm: a novel metaheuristic for continuous optimisation. Int J Comput Sci Eng 6(1–2):132–140

    Google Scholar 

  • Simon D (2008) Biogeography-based optimization. IEEE Trans Evol Comput 12(6):702–713

    Article  Google Scholar 

  • Sörensen K, Sevaux M, Glover F (2018) A history of metaheuristics. In: Martí R, Pardalos P, Resende M (eds) Handbook of heuristics. Springer, Berlin, pp 1–18

    Google Scholar 

  • Storn R, Price K (1997) Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J Glob Optim 11(4):341–359

    Article  MathSciNet  MATH  Google Scholar 

  • Talatahari S, Azizi M (2020) Optimal design of real-size building structures using quantum-behaved developed swarm optimizer. Struct Des Tall Spec Build. https://doi.org/10.1002/tal.1747

    Article  Google Scholar 

  • Talatahari S, Kaveh A, Sheikholeslami R (2011) An efficient charged system search using chaos. Int J Optim Civil Eng 1(2):305–332

    Google Scholar 

  • Talatahari S, Azar BF, Sheikholeslami R, Gandomi AH (2012) Imperialist competitive algorithm combined with chaos for global optimization. Commun Nonlinear Sci Numer Simul 17(3):1312–1319

    Article  MathSciNet  MATH  Google Scholar 

  • Talatahari S, Motamedi P, Farahmand Azar B, Azizi M (2019) Tribe–charged system search for parameter configuration of nonlinear systems with large search domains. Eng Optim. https://doi.org/10.1080/0305215X.2019.1696786

    Article  Google Scholar 

  • Tayarani-N MH, Akbarzadeh-T MR (2008) Magnetic optimization algorithms a new synthesis. In: 2008 IEEE congress on evolutionary computation (IEEE world congress on computational intelligence). IEEE, pp 2659–2664

  • Wang L, Zhong Y (2015) Cuckoo search algorithm with chaotic maps. Math Probl Eng 2015:1–14

    MathSciNet  MATH  Google Scholar 

  • Wang GG, Guo L, Gandomi AH, Hao GS, Wang H (2014) Chaotic krill herd algorithm. Inf Sci 274:17–34

    Article  MathSciNet  Google Scholar 

  • Yang XS (2010a) Nature-inspired metaheuristic algorithms. Luniver Press, Beckington

    Google Scholar 

  • Yang XS (2010b) Test problems in optimization. arXiv preprint arXiv:1008.0549

  • Yang XS, Deb S (2009) Cuckoo search via Lévy flights. In: 2009 world congress on nature & biologically inspired computing (NaBIC). IEEE, pp 210–214

  • Yu H, Yu Y, Liu Y, Wang Y, Gao S (2016) Chaotic grey wolf optimization. In: 2016 International conference on progress in informatics and computing (PIC). IEEE, pp 103–113

  • Zaldivar D, Morales B, Rodriguez A, Valdivia-G A, Cuevas E, Perez-Cisneros M (2018) A novel bio-inspired optimization model based on Yellow Saddle Goatfish behavior. Biosystems 174:1–21

    Article  Google Scholar 

Download references

Acknowledgements

This research is supported by a research grant of the University of Tabriz (Number: 1105).

Funding

This study was funded by the University of Tabriz (Grant Number 1105).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siamak Talatahari.

Ethics declarations

Conflict of interest

Authors have received research grant from the University of Tabriz (Grant Number 1105).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Matlab code for the CGO algorithm.

figure a
figure b

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Talatahari, S., Azizi, M. Chaos Game Optimization: a novel metaheuristic algorithm. Artif Intell Rev 54, 917–1004 (2021). https://doi.org/10.1007/s10462-020-09867-w

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10462-020-09867-w

Keywords