Skip to main content
Log in

Multi-focus image fusion techniques: a survey

  • Published:
Artificial Intelligence Review Aims and scope Submit manuscript

Abstract

Multi-Focus Image Fusion (MFIF) is a method that combines two or more source images to obtain a single image which is focused, has improved quality and more information than the source images. Due to limited Depth-of-Field of the imagining system, extracting all the useful information from a single image is challenging. Thus two or more defocused source images are fused together to obtain a composite image. This paper provides a comprehensive overview of existing MFIF methods. A new classification scheme is developed for categorizing the existing MFIF methods. These methods are classified into four major categories: spatial domain, transform domain, deep leaning and their hybrids and have been discussed well along with their drawbacks and challenges. In addition to this, both the parametric evaluation metrics i.e. "with reference" and "without reference" have also discussed. Then, a comparative analysis for nine image fusion methods is performed based on 30 pairs of publicly available images. Finally, various challenges that remain unaddressed and future work is also discussed in this work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Agrawal D, Singhai J (2010) Multifocus image fusion using modified pulse coupled neural network for improved image quality. IET Image Proc 4(6):443–451

    Article  Google Scholar 

  • Aslantas V, Kurban R (2009) A comparison of criterion functions for fusion of multi-focus noisy images. Opt Commun 282(16):3231–3242

    Article  Google Scholar 

  • Aslantas V, Kurban R (2010) Fusion of multi-focus images using differential evolution algorithm. Expert Syst Appl 37(12):8861–8870

    Article  Google Scholar 

  • Aymaz S, Kose C, (2017) Multi-focus image fusion using Stationary Wavelet Transform (SWT) with Principal Component Analysis (PCA): In Proceedings of the 10th international conference on electrical and electronics engineering (ELECO). pp 1176–1180

  • Aymaz S, Kose C (2019) A novel image decomposition-based hybrid technique with super-resolution method for multi-focus image fusion. Inf Fus 45:113–127

    Article  Google Scholar 

  • Bai X, Zhang Y, Zhou F, Xue B (2015) Quadtree-based multi-focus image fusion using a weighted focus-measure. Inf Fus 22(1):105–118

    Article  Google Scholar 

  • Bai X, Liu M, Chen Z, Wang P, Zhang Y (2016) Multi-focus image fusion through gradient-based decision map construction and mathematical morphology. IEEE Access 4:4749–4760

    Article  Google Scholar 

  • Balasubramaniam P, Ananthi VP (2014) Image fusion using intuitionistic fuzzy sets. Inf Fus 20:21–30

    Article  Google Scholar 

  • Banharnsakun A (2019) Multi-focus image fusion using best-so-far abc strategies. Neural Comput Appl 31(7):2025–2040

    Article  Google Scholar 

  • Bavirisetti DP, Dhuli R (2016) Fusion of infrared and visible sensor images based on anisotropic diffusion and karhunen-loeve transform. IEEE Sens J 16(1):203

    Article  Google Scholar 

  • Bhandari PK, Venkasteshappa CPR (2016) An efficient method of image fusion using SWT & DTCWT. Int J Electron Commun Eng 9(1):29–37

    Google Scholar 

  • Bhat S, Koundal D (2019) Multi-focus image fusion: quantitative and qualitative comparative analysis. In: Proceedings of the 2nd international conference on recent innovations in computing (ICRIC). pp 533–542

  • Bogoni L, Hansen M (2001) Pattern-selective color image fusion. Pattern Recogn 34:1515–1526

    Article  MATH  Google Scholar 

  • Bouzos O, Andreadis I, Mitianoudis N (2019) Conditional random field model for robust multi-focus image fusion. IEEE Trans Image Process 28(11):5636–5648

    Article  MathSciNet  MATH  Google Scholar 

  • Burt P, Adelson E (1985) Merging images through pattern decomposition. Appl Digital Image Process VIII 575:173–181

    Google Scholar 

  • Burt P, Kolcznski R (1993) Enhanced image capture through fusion. In: Proceedings of IEEE Interational Coference on Computer Vision (ICCV). pp 173–182

  • Chai Y, Li H, Zhang X (2012b) Multifocus image fusion based on features contrast of multiscale products in nonsubsampled contourlet transform domain. Optik Int J Light Electron Opt 123(7):569–581

    Article  Google Scholar 

  • Chai Y, Li H, Zhang X (2012a) Multifocus image fusion based on features contrast of multiscale products in nonsubsampled contourlet transform domain. Optik Int J Light Electron Opt 123(7):569–581

    Article  Google Scholar 

  • Chen Y, Guan J, Cham WK (2007) Robust multi-focus image fusion using edge model and multi-matting. IEEE Trans Image Process 27(3):1526–1541

    Article  MathSciNet  MATH  Google Scholar 

  • Chen L, Li J, Chen C (2013) Regional multifocus image fusion using sparse representation. Opt Express 21(4):5182–5197

    Article  Google Scholar 

  • Chen Z, Wang D, Gong S, Zhao F (2017) Application of multi-focus image fusion in visual power patrol inspection. Paper presented at 2nd advanced information technology electronic and automation control conference (IAEAC). pp 1688–1692

  • da Cunha AL, Zhou J, Do MN (2006) The nonsubsampled contourlet transform: theory, design, and applications. IEEE Trans Image Process 15(10):3089–3101

    Article  Google Scholar 

  • Du C, Gao S (2018) Multi-focus image fusion algorithm based on pulse coupled neural networks and modified decision map. Optik 157:1003–1015

    Article  Google Scholar 

  • Easley G, Labate D, Lim W (2008) Sparse directional image representations using the discrete shearlet transform. Appl Comput Harmon Anal 25:25–46

    Article  MathSciNet  MATH  Google Scholar 

  • Farid MS, Mahmood A, Al-Maadeed SA (2019) Multi-focus image fusion using content adaptive blurring. Inf Fus 45:96–112

    Article  Google Scholar 

  • Garg R, Gupta P, Kaur H, (2014) Survey on multi-focus image fusion algorithms. Paper presented on Recent Advances in Engineering and Computational Sciences (RAECS). pp. 1–5

  • Guo L, Dai M, Zhu M (2012) Multifocus color image fusion based on quaternion curvelet transform. Opt Express 20(17):18846–18860

    Article  Google Scholar 

  • Guo X, Nie R, Cao J, Zhou D, Qian W (2018) Fully convolutional network-based multifocus image fusion. Neural Comput 30(7):1775–1800

    Article  MathSciNet  MATH  Google Scholar 

  • Haghighat MBA, Aghagolzadeh A, Seyedarabi H (2010) Real-time fusion of multi-focus images for visual sensor networks. Paper presented at 6th Iranian conference on machine vision and image processing. pp 1–6

  • Haghighat MBA, Aghagolzadeh A, Seyedarabi H (2011) Multi-focus image fusion for visual sensor networks in DCT domain. Comput Electr Eng 37(5):789–797

    Article  MATH  Google Scholar 

  • Hao X, Zhao H, Liu J (2015) Multifocus color image sequence fusion based on mean shift segmentation. Appl Opt 54(30):8982–8989

    Article  Google Scholar 

  • He K, Zhou D, Zhang X, Nie R, Jin X (2018) Multi-focus image fusion combining focus-region-level partition and pulse-coupled neural network. Soft Comput 23:1–15

    Google Scholar 

  • Helonde MR, Joshi MR (2015) Image fusion based on medical images using DWT and PCA methods. Int J Comput Tech 2(1):75–79

    Google Scholar 

  • Hong R, Wang C, Ge Y, Wang M, Wu X, Zhang R (2007) Salience preserving multi-focus image fusion. In: Proceedings of IEEE international conference on multimedia and expo (ICME). pp 1663–1666

  • Hou R, Zhou D, Nie R, Liu D (2018) Multi-focus color image fusion scheme using NSST and focus region detection. In: Proceedings of the 3rd international conference on multimedia and image processing. pp 7–11

  • Hu K, Ye J, Fan E, Shen S, Huang L, Pi J (2017) A novel object tracking algorithm by fusing color and depth information based on single valued neutrosophic cross-entropy. J Intell Fuzzy Syst 32(3):1775–1786

    Article  Google Scholar 

  • Hua KL, Wang HC, Rusdi AH, Jiang SY (2014) A novel multi-focus image fusion algorithm based on random walks. J Vis Commun Image Represent 25(5):951–962

    Article  Google Scholar 

  • Huang W, Jing Z (2007) Multi-focus image fusion using pulse coupled neural network. Pattern Recognit Lett 28(9):1123–1132

    Article  Google Scholar 

  • Huang Y, Li W, Gao M, Liu Z (2018) Algebraic multi-grid based multi-focus image fusion using watershed algorithm. IEEE Access 6:47802–47091

    Google Scholar 

  • Ji Z, Kang X, Zhang K, Duan P, Hao Q (2020) A two-stage multi-focus image fusion framework robust to image mis-registration. IEEE Access 7:123231–123243

    Article  Google Scholar 

  • Jiang ZG, Han DB, Chen J, Zhou XK (2004) A wavelet based algorithm for multi-focus micro-image fusion. In: Proceedings of the third international conference on image and graphics (ICIG). pp 176–179

  • Jiang Q, Jin X, Lee SJ, Yao S (2017) A novel multi-focus image fusion method based on stationary wavelet transform and local features of fuzzy sets. IEEE Access 5:20286–20302

    Article  Google Scholar 

  • Jin X, Hou J, Nie R, Yao S, Zhou D, Jiang Q, He K (2018) A lightweight scheme for multi-focus image fusion. Multimed Tools Appl 77(18):20286–20302

    Article  Google Scholar 

  • K. Sujatha K, D.S. Punithavathani, (2018) Optimized ensemble decision-based multi-focus image fusion using binary genetic Grey-Wolf optimizer in camera sensor networks. Multimed Tools Appl 77(2):1735–1759

    Article  Google Scholar 

  • Kannan K, Perumal AS, Arulmozhi K (2010) Optimal decomposition level of discrete, stationary and dual tree complex wavelet transform for pixel based fusion of multi-focused images. Serbian J Electr Eng 7(1):81–93

    Article  Google Scholar 

  • Kaur G, Kaur P (2016) Survey on multifocus image fusion techniques. Paper presented at international conference on electrical, electronics, and optimization techniques (ICEEOT). pp 1420–1424

  • Kaur H, Rani EJ (2015) Analytical comparison of various image fusion techniques. Int J Adv Res Comput Sci Softw Eng 5(5):1–5

    Google Scholar 

  • Kaur H, Koundal D, Kadyan V (2021) Image fusion techniques: a survey. Arch Computat Methods Eng. https://doi.org/10.1007/s11831-021-09540-7

    Article  Google Scholar 

  • Kong J, Zheng K, Zhang J, Feng X (2008) Multi-focus image fusion using spatial frequency and genetic algorithm. Int J Comput Sci Netw Secur 8(2):220–224

    Google Scholar 

  • Kou L, Zhang L, Zhang K, Sun J, Han Q, Jin Z (2018) A multi-focus image fusion method via region mosaicking on Laplacian pyramids. PLoS ONE 13(5):0191085

    Article  Google Scholar 

  • Lai R, Li Y, Guan J, Xiong A (2019) Multi-scale visual attention deep convolutional neural network for multi-focus image fusion. IEEE Access 7:114385–114399

    Article  Google Scholar 

  • Li H, Wu XJ, (2018) Multi-focus noisy image fusion using low-rank representation, arXiv preprint arXiv: 1804.09325

  • Li S, Yang B (2008) Multifocus image fusion using region segmentation and spatial frequency. Image Vis Comput 26(7):971–979

    Article  Google Scholar 

  • Li S, Kwok J, Wang Y (2001) Combination of images with diverse focuses using the spatial frequency. Inf Fus 2(3):169–176

    Article  Google Scholar 

  • Li S, Kwok JT, Wang Y (2002) Multifocus image fusion using artificial neural networks. Pattern Recogn Lett 23(8):985–997

    Article  MATH  Google Scholar 

  • Li Z, Jing Z, Liu G, Sun S, Leung H (2003) Pixel visibility based multifocus image fusion. Paper presented at international conference on neural networks and signal processing. pp 1050–1053

  • Li M, Cai W, Tan Z (2006) A region-based multi-sensor image fusion scheme using pulse-coupled neural network. Pattern Recogn Lett 27(16):1948–1956

    Article  Google Scholar 

  • Li H, Chai Y, Li Z (2013) A new fusion scheme for multifocus images based on focused pixels detection. Mach Vis Appl 24(6):1167–1181

    Article  Google Scholar 

  • Li H, Liu X, Yu Z, Zhang Y (2016) Performance improvement scheme of multifocus image fusion derived by difference images. Signal Process 128:474–493

    Article  Google Scholar 

  • Li H, Qiu H, Yu Z, Li B (2017) Multifocus image fusion via fixed window technique of multiscale images and non-local means filtering. Signal Process 138:71–85

    Article  Google Scholar 

  • Li H, Nie R, Cao J, Guo X, Zhou D, He K (2019) Multi-focus image fusion using u-shaped networks with a hybrid objective. IEEE Sens J 19(21):9755–9765

    Article  Google Scholar 

  • Li J, Guo X, Lu G, Zhang B, Xu Y, Wu F, Zhang D (2020) Drpl: deep regression pair learning for multi-focus image fusion. IEEE Trans Image Process 29:4816–4831

    Article  Google Scholar 

  • Liu Y, Wang Z (2015) Simultaneous image fusion and denosing with adaptive sparse representation. IET Image Proc 9(5):347–357

    Article  Google Scholar 

  • Liu Y, Jin J, Wang Q, Shen Y, Dong X (2013) Novel focus region detection method for multifocus image fusion using quaternion wavelet. J Electron Imag 22(2):023017-1-023017–17

    Article  Google Scholar 

  • Liu Y, Jin J, Wang Q, Shen Y, Dong X (2014) Region level based multi-focus image fusion using quaternion wavelet and normalized cut. Signal Process 97:9–30

    Article  Google Scholar 

  • Liu Y, Liu S, Wang Z (2015) Multi-focus image fusion with dense SIFT. Inf Fus 23(1):139–155

    Article  Google Scholar 

  • Liu S, Shi M, Zhu Z, Zhao J (2017b) Image fusion based on complex-shearlet domain with guided filtering. Multidimens Syst Signal Process 28:207–224

    Article  MATH  Google Scholar 

  • Liu Y, Chen X, Peng H, Wang Z (2017a) Multi-focus image fusion with a deep convolutional neural network. Inf Fus 36:191–207

    Article  Google Scholar 

  • Liu Y, Wang L, Cheng J, Li C, Chen X (2020) Multi-focus image fusion: a survey of the state of the art. Inf Fus 64:71–91

    Article  Google Scholar 

  • Lu Y, Feng X, Zhang J, Wang R, Zheng K, Kong J (2007) A multi-focus image fusion based on wavelet and region detection. Paper presented at international conference on computer as a tool. pp 294–298

  • Ludusan C, Lavialle O (2012) Multifocus image fusion and denoising: a variational ap- proach. Pattern Recognit Lett 33(10):1388–1396

    Article  Google Scholar 

  • Ma X, Hu S, Liu S, Fang J, Xu S (2019b) Multi-focus image fusion based on joint sparse representation and optimum theory. Signal Process Image Commun 78:125–134

    Article  Google Scholar 

  • Ma J, Zhou Z, Wang B, Miao L, Zong H (2019a) Multi-focus image fusion using boosted random walks-based algorithm with two-scale focus maps. Neurocomputing 335:9–20

    Article  Google Scholar 

  • Miao Q, Wang B (2005) A novel adaptive multi-focus image fusion algorithm based on PCNN and sharpness. Sens Command Control Commun Intell Technol Homeland Security Homeland Defense 5778:704–713

    Google Scholar 

  • Miao Q, Shi C, Xu P, Yang M, Shi Y (2011) A novel algorithm of image fusion using shearlets. Opt Commun 284(6):1540–1547

    Article  Google Scholar 

  • Ming L, Yan W, Shunjun W (2003) Multi-focus image fusion based on wavelet decomposition and evolutionary strategy. Paper presented at international conference on neural networks and signal processing. pp 951–955

  • Ming L, Yan W, Shunjun W (2004) A new pixel-level multi-focus image fusion algorithm based on evolutionary strategy. Paper presented at conference on control, automation, robotics and vision. pp 810–814

  • Naidu V (2013) Novel image fusion techniques using dct. Int J Comput Sci Bus Inf 5(1):1–18

    Google Scholar 

  • Nejati M, Samavi S, Shirani S (2015) Multi-focus image fusion using dictionary-based sparse representation. Inf Fus 25(1):72–84

    Article  Google Scholar 

  • Nejati M, Samavi S, Karimi N, Soroushmehr SR, Shirani S, Roosta I, Najarian K (2017) Surface area-based focus criterion for multi-focus image fusion. Inf Fus 36:284–295

    Article  Google Scholar 

  • Pajares G, Cruz JM (2004) A wavelet-based image fusion tutorial. Pattern Recogn 37(9):1855–1872

    Article  Google Scholar 

  • Patel R, Rajput M, Parekh P (2015) Comparative study on multi-focus image fusion techniques in dynamic scene. Int J Comput Appl 109:5–9

    Google Scholar 

  • Paul S, Sevcenco I, Agathoklis P (2016) Multi-exposure and multi-focus image fusion in gradient domain. J Circuits Syst Comput 25(10):1650123

    Article  Google Scholar 

  • Phamila YA, Amutha R (2014) Discrete cosine transform based fusion of multi-focus images for visual sensor networks. Signal Process 95:161–170

    Article  Google Scholar 

  • Piella G (2009) Image fusion for enhanced visualization: avariational approach. Int J Comput Vis 83(1):1–11

    Article  Google Scholar 

  • Plas RVD, Yang J, Spraggins J, Caprioli RM (2015) Image fusion of mass spectrometry and microscopy: a multimodality paradigm for molecular tissue mapping. Nat Methods 12(4):366–372

    Article  Google Scholar 

  • Qayyum H, Majid M, Anwar SM, Khan B (2017) Facial expression recognition using stationary wavelet transform features. Math Probl Eng 2017:1–9

    Article  Google Scholar 

  • Saeedi J, Faez K, Mozaffari S (2009) Multi-focus image fusion based on fuzzy and wavelet transform. Iberoamerican Congress on Pattern Recognition. pp 970–977

  • Sahu DK, Parsai MP (2012) Different image fusion techniques–a critical review. Int J Modern Eng Res 2(5):4298–4301

    Google Scholar 

  • Siddiqui AB, Rashid M, Jaffar MA, Hussain A, Mirza AM (2011) Feature classification for multi-focus image fusion. Int J Phys Sci 6(20):4838–4847

    Google Scholar 

  • Simone G, Farina A, Morabito FC, Serpico SB, Bruzzone L (2002) Image fusion techniques for remote sensing applications. Inf Fus 3(1):3–15

    Article  Google Scholar 

  • Singh T, Manchanda P (2018) Multi-focus image fusion using modified gaussian filter and discrete lifting wavelet transform. Int J Electron Eng 10(2):201–209

    Google Scholar 

  • Singh S, Patil MM (2016) Multi focus image fusion based on spatial frequency and contrast based analysis under stationary wavelet transform domain. Int J Sci Eng Res 7(5):225–230

    Google Scholar 

  • Sivagami R, Vaithiyanathan V, Sangeetha V, Ahmed MI, Sundar KJA, Lakshmi KD (2015) Review of image fusion techniques and evaluation metrics for remote sensing applications. Indian J Sci Technol 8:1–7

    Article  Google Scholar 

  • Sun J, Zhu H, Xu Z, Han C (2013) Poisson image fusion based on markov random field fusion model. Inf Fus 14(3):241–254

    Article  Google Scholar 

  • Sun J, Han Q, Kou L, Zhang L, Zhang K, Jin Z (2018) Multi-focus image fusion algorithm based on Laplacian pyramids. JOSA A 35(3):480–490

    Article  Google Scholar 

  • Tang H, Xiao B, Li W, Wang G (2018) Pixel convolutional neural network for multi-focus image fusion. Inf Sci 433(1):125–141

    Article  MathSciNet  Google Scholar 

  • Tian J, Chen L (2012) Adaptive multi-focus image fusion using a wavelet-based statistical sharpness measure. Signal Process 92(9):2137–2146

    Article  Google Scholar 

  • Vakaimalar E, Mala K, Babu RS (2019) Multifocus image fusion scheme based on discrete cosine transform and spatial frequency. Multimed Tools Appl 78(13):17573–17587

    Article  Google Scholar 

  • Wan T, Zhu C, Qin Z (2013) Multifocus image fusion based on robust principal component analysis. Pattern Recogn Lett 34(9):1001–1008

    Article  Google Scholar 

  • Wang Z, Ma Y (2008) “Medical image fusion using m-PCNN. Inf Fus 9(2):176–185

    Article  Google Scholar 

  • Wei S, Ke W (2007) A multi-focus image fusion algorithm with DT-CWT. Paper presented at international conference on computationaal intelligence and security. pp 147–151

  • Xia X, Yao Y, Yin L, Wu S, Li H, Yang Z (2018) Multi-focus image fusion based on probability filtering and region correction. Signal Process 153:71–82

    Article  Google Scholar 

  • Xu K, Qin Z, Wang G, Zhang H, Huang K, Ye S (2018) Multi-focus image fusion using fully convolutional two-stream network for visual sensors. KSII Trans Internet Inf Syst 12(5):2253–2272

    Google Scholar 

  • Song Y, Li M, Li Q, Sun L (2006) A new wavelet based multi-focus image fusion scheme and its application on optical microscopy. Paper presented at international conference on robotics and biomimetics (ROBIO).pp 401–405

  • Yang Y (2011) A novel DWT based multi-focus image fusion method. Int Conf Adv Eng 24:177–181

    Google Scholar 

  • Yang B, Li S (2010) Multifocus image fusion and restoration with sparse representation. IEEE Trans Instrum Meas 59(4):884–892

    Article  Google Scholar 

  • Yang B, Li S (2012) Pixel-level image fusion with simultaneous orthogonal matching pursuit. Inf Fus 13(1):10–19

    Article  Google Scholar 

  • Yang B, Li S, Sun F, (2007) Image fusion using nonsubsampled contourlet transform. In: Proceedings of international conference on image and graphics (ICIG). pp 719–724

  • Yang Y, Zheng W, Huang S (2014) Effective multifocus image fusion based on HVS and BP neural network. Sci World J 14(1):1–10

    Google Scholar 

  • Yang Y, Yang M, Huang S, Ding M, Sun J (2018) Robust sparse representation combined with adaptive PCNN for multifocus image fusion. IEEE Access 6:20138–201351

    Article  Google Scholar 

  • Yang Y, Nie Z, Huang S, Lin P, Wu J (2019) Multilevel features convolutional neural network for multifocus image fusion. IEEE Trans Comput Imaging 5(2):262–273

    Article  Google Scholar 

  • Yin H, Li Y, Chai Y, Liu Z, Zhu Z (2016) A novel sparse-representation-based multi-focus image fusion approach. Neurocomputing 216(5):216–229

    Article  Google Scholar 

  • Zafar I, Edirisinghe EA, Bez HE (2006) Multi-exposure & multi-focus image fusion in transform domain. In: IET international conference on visual information engineering. pp 606–611

  • Zhang Q, Guo B (2009) Multifocus image fusion using the nonsubsampled contourlet transform. Signal Process 89(7):1334–1346

    Article  MATH  Google Scholar 

  • Zhang B, Zhang C, Yuanyuan L, Jianshuai W, He L (2014) Multi-focus image fusion algorithm based on compound pcnn in surfacelet domain. Optik (Stuttg) 125(1):296–300

    Article  Google Scholar 

  • Zhang Y, Liu Y, Sun P, Yan H, Zhao X, Zhang L (2020) Ifcnn: a general image fusion framework based on convolutional neural network. Inf Fus 54:99–118

    Article  Google Scholar 

  • Zhao W, Wang D, Lu H (2018) Multi-focus image fusion with a natural enhancement via joint multi-level deeply supervised convolutional neural network. IEEE Transact Circuit Syst Video Technol 29(4):1102–1115

    Article  Google Scholar 

  • Zhou Z et al (2016a) Fusion of infrared and visible images for night-vision context enhancement. Appl Opt 55(23):6480

    Article  Google Scholar 

  • Zhou Z et al (2016b) Perceptual fusion of infrared and visible images through a hybrid multi-scale decomposition with Gaussian and bilateral filters. Inf Fus 30:15–26

    Article  Google Scholar 

  • Zhou Z, Li S, Wang B (2014) Multi-scale weighted gradient-based fusion for multi-focus images. Inf Fus 20:60–72

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deepika Koundal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhat, S., Koundal, D. Multi-focus image fusion techniques: a survey. Artif Intell Rev 54, 5735–5787 (2021). https://doi.org/10.1007/s10462-021-09961-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10462-021-09961-7

Keywords