Skip to main content
Log in

Recent advances of deep learning algorithms for aquacultural machine vision systems with emphasis on fish

  • Published:
Artificial Intelligence Review Aims and scope Submit manuscript

Abstract

Monitoring the growth conditions and behavior of fish will enable scientific management, reduce the threat of losses caused by disease and stress. Traditional monitoring methods are time-consuming, laborious, and untimely monitoring readily leads to aquaculture accidents. As a non-invasive, objective, and repeatable tool, machine vision systems have been widely used in various aspects of aquaculture monitoring. Nevertheless, the complex underwater environment makes it difficult to obtain ideal data processing results only using traditional image processing methods. Due to their powerful feature extraction capabilities, deep learning (DL) algorithms have been widely used in underwater image processing. Hence, the combination of DL algorithms and machine vision for the automated monitoring of aquaculture is of great importance. As evidence for the multidisciplinary aspects of DL applications, attention is focused on the latest DL methods applied to five fields of research: classification, detection, counting, behavior recognition, and biomass estimation. Meanwhile, due to the low training efficiency of DL models caused by insufficient dataset, transfer learning and GAN have also put into spotlight of this filed to pursue high performance of DL models. We also present the challenges and benchmarks in terms of the advantages and disadvantages of the selected method in each field. In addition, we review the sources of image acquisition and pre-processing methods in aquaculture. Finally, the challenges and prospects of DL in aquaculture machine vision systems are discussed. The literature review shows that the deep neural networks such as AlexNet, LSTM, VGG, and GoogLeNet, have been used for aquaculture machine vision systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Abayomi‐Alli OO, Damaševičius R, Misra S, Maskeliūnas R (2021) Cassava disease recognition from low‐quality images using enhanced data augmentation model and deep learning. Expert Syst 38(7):1–21

  • Al-Ghaib H, Adhami R (2014) On the digital image additive white Gaussian noise estimation. In: 2014 international conference on industrial automation, information and communications technology, pp 90–96

  • Ali-Gombe A, Elyan E, Jayne C (2017) Fish classification in context of noisy images. In: International conference on engineering applications of neural networks, pp 216–226

  • Álvarez-Ellacuría A, Palmer M, Catalán IA, Lisani J-L (2019) Image-based, unsupervised estimation of fish size from commercial landings using deep learning. ICES J Mar Sci 77(4):1330–1339

    Article  Google Scholar 

  • Ashley PJ (2007) Fish welfare: current issues in aquaculture. Appl Anim Behav Sci 104(3–4):199–235

    Article  Google Scholar 

  • Atienza-Vanacloig V, Andreu-García G, López-García F, Valiente-González JM, Puig-Pons V (2016) Vision-based discrimination of tuna individuals in grow-out cages through a fish bending model. Comput Electron Agric 130:142–150

    Article  Google Scholar 

  • Banan A, Nasiri A, Taheri-Garavand A (2020) Deep learning-based appearance features extraction for automated carp species identification. Aquacult Eng 89:102053

    Article  Google Scholar 

  • Bengio Y, Simard P, Frasconi P (1994) Learning long-term dependencies with gradient descent is difficult. IEEE Trans Neural Netw 5(2):157–166

    Article  Google Scholar 

  • Beucher S, Meyer F (1993) The morphological approach to segmentation: the watershed transformation. Mathematical morphology in image processing. Opt Eng 34:433–481

    Google Scholar 

  • Boglione C, Costa C (2011) Skeletal deformities and juvenile quality. Sparidae 233–294

  • Bravata N, Kelly D, Eickholt J, Bryan J, Miehls S, Zielinski D (2020) Applications of deep convolutional neural networks to predict length, circumference, and weight from mostly dewatered images of fish. Ecol Evol 10(17):9313–9325

    Article  Google Scholar 

  • Butail S, Paley DA (2012) Three-dimensional reconstruction of the fast-start swimming kinematics of densely schooling fish. J R Soc Interface 9(66):77–88

    Article  Google Scholar 

  • Chang CM, Fang W, Jao RC, Shyu CZ, Liao IC (2005) Development of an intelligent feeding controller for indoor intensive culturing of eel. Aquacult Eng 32(2):343–353

    Article  Google Scholar 

  • Chen J, Chen J, Chao H, Yang M (2018) Image blind denoising with generative adversarial network based noise modeling. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 3155–3164

  • Chen C, Zhu W, Oczak M, Maschat K, Baumgartner J, Larsen MLV, Norton T (2020a) A computer vision approach for recognition of the engagement of pigs with different enrichment objects. Comput Electron Agricult 175:105580

    Article  Google Scholar 

  • Chen C, Zhu W, Steibel J, Siegford J, Han J, Norton T (2020b) Classification of drinking and drinker-playing in pigs by a video-based deep learning method. Biosys Eng 196:1–14

    Article  Google Scholar 

  • Chen C, Zhu W, Steibel J, Siegford J, Han J, Norton T (2020c) Recognition of feeding behaviour of pigs and determination of feeding time of each pig by a video-based deep learning method. Comput Electron Agricult 176:105642

    Article  Google Scholar 

  • Chollet F (2017) Xception:dDeep learning with depthwise separable convolutions. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1251–1258

  • Christensen JH, Mogensen LV, Galeazzi R, Andersen JC (2018) Detection, localization and classification of fish and fish species in poor conditions using convolutional neural networks. In: 2018 IEEE/OES autonomous underwater vehicle workshop (AUV)

  • Conte FS (2004) Stress and the welfare of cultured fish. Appl Anim Behav Sci 86(3–4):205–223

    Article  Google Scholar 

  • Creswell A, White T, Dumoulin V, Arulkumaran K, Sengupta B, Bharath AA (2018) Generative adversarial networks: an overview. IEEE Signal Process Mag 35(1):53–65

    Article  Google Scholar 

  • Cui J, Wei B, Wang C, Yu Z, Zheng H, Zheng B, Yang H (2018) Texture and shape information fusion of convolutional neural network for plankton image classification. In: 2018 OCEANS-MTS/IEEE Kobe Techno-Oceans (OTO), pp 1–5

  • Delcourt J, Denoël M, Ylieff M, Poncin P (2013) Video multitracking of fish behaviour: a synthesis and future perspectives. Fish Fish 14(2):186–204

    Article  Google Scholar 

  • Ding W, Taylor G (2016) Automatic moth detection from trap images for pest management. Comput Electron Agric 123:17–28

    Article  Google Scholar 

  • Ding G, Song Y, Guo J, Feng CL, Guangliang, He B, Yan T (2017) Fish recognition using convolutional neural network. In: OCEANS 2017

  • Ditria EM, Lopez-Marcano S, Sievers M, Jinks EL, Brown CJ, Connolly RM (2020) Automating the analysis of fish abundance using object detection: optimizing animal ecology with deep learning. Front Mar Sci 7:429

    Article  Google Scholar 

  • Dong C, Loy CC, He K, Tang X (2015) Image super-resolution using deep convolutional networks. IEEE Trans Pattern Anal Mach Intell 38(2):295–307

    Article  Google Scholar 

  • Dong J, Yu H, Wang X, Wanga C, Sun X, Dong J, Jianping Y (2018) Low-contrast underwater living fish recognition using PCANet, p 63

  • dos Santos AA, Gonçalves WN (2019) Improving Pantanal fish species recognition through taxonomic ranks in convolutional neural networks. Ecol Inform 53:100977

    Article  Google Scholar 

  • Elman JL (1990) Finding structure in time. Cogn Sci 14(2):179–211

    Article  Google Scholar 

  • Fernandes AFA, Turra EM, de Alvarenga ÉR, Passafaro TL, Lopes FB, Alves GFO, Singh V, Rosa GJM (2020) Deep Learning image segmentation for extraction of fish body measurements and prediction of body weight and carcass traits in Nile tilapia. Comput Electron Agric 170:105574

    Article  Google Scholar 

  • Fontaine E, Lentink D, Kranenbarg S, Müller UK, van Leeuwen JL, Barr AH, Burdick JW (2008) Automated visual tracking for studying the ontogeny of zebrafish swimming. J Exp Biol 211(8):1305–1316

    Article  Google Scholar 

  • French G, Fisher M, Mackiewicz M, Needle C (2015) Convolutional neural networks for counting fish in fisheries surveillance video, pp 7.1–7.10

  • Fuentes A, Yoon S, Park J, Park DS (2020) Deep learning-based hierarchical cattle behavior recognition with spatio-temporal information. Comput Electron Agric 177:105627

    Article  Google Scholar 

  • Galloway A, Taylor GW, Ramsay A, Moussa M (2017) The Ciona17 dataset for semantic segmentation of invasive species in a marine aquaculture environment. In: 2017 14th conference on computer and robot vision

  • Gómez-Ríos A, Tabik S, Luengo J, Shihavuddin ASM, Krawczyk B, Herrera F (2019) Towards highly accurate coral texture images classification using deep convolutional neural networks and data augmentation. Expert Syst Appl 18:315–328

    Article  Google Scholar 

  • Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y (2014) Generative adversarial nets. In: Advances in neural information processing systems. In: Advances in neural information processing systems, pp 2672–2680

  • Goyal B, Dogra A, Agrawal S, Sohi BS, Sharma A (2020) Image denoising review: from classical to state-of-the-art approaches. Inf Fus 55:220–244

    Article  Google Scholar 

  • Han F, Yao J, Zhu H, Wang C (2020a) Marine organism detection and classification from underwater vision based on the deep CNN method. Math Probl Eng 2020:1–11

    Google Scholar 

  • Han F, Zhu J, Liu B, Zhang B, Xie F (2020b) Fish shoals behavior detection based on convolutional neural network and spatiotemporal information. IEEE Access 8:126907–126926

    Article  Google Scholar 

  • He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: 2016 IEEE conference on computer vision and pattern recognition (CVPR), pp 770–778

  • Hinton GE, Salakhutdinov RR (2006) Reducing the dimensionality of data with neural networks. Science 313(5786):504–507

    Article  MathSciNet  MATH  Google Scholar 

  • Hirama Y, Yokoyama S, Yamashita T, Kawamura H, Suzuki K, Wada M (2017) Discriminating fish species by an Echo sounder in a set-net using a CNN. In: 21st Asia Pacific symposium on intelligent and evolutionary systems, IES 2017

  • Hochreiter S, Schmidhuber J (1997) Long short-term memory. Neural Comput 9(8):1735–1780

    Article  Google Scholar 

  • Hu J, Li DL, Duan QL, Han YQ, Chen GF, Si XL (2012) Fish species classification by color, texture and multi-class support vector machine using computer vision. Comput Electron Agric 88:133–140

    Article  Google Scholar 

  • Huang G, Liu Z, Van Der Maaten L, Weinberger KQ (2017) Densely connected convolutional networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 4700–4708

  • Huang T-W, Hwang J-N, Romain S, Wallace F (2019) Recognizing fish species captured live on wild sea surface in videos by deep metric learning with a temporal constraint. In: 26th IEEE international conference on image processing, ICIP 2019, Taipei, Taiwan

  • Iqbal MA, Wang Z, Ali ZA, Riaz S (2021) Automatic fish species classification using deep convolutional neural networks. Wirel Pers Commun 116(2):1043–1053

    Article  Google Scholar 

  • Jäger J, Simon M, Denzler J, Wolff V, Fricke-Neuderth K, Kruschel C (2015) Croatian Fish Dataset: fine-grained classification of fish species in their natural habitat, pp 6.1–6.7

  • Jager J, Wolff V, Fricke-Neuderth K, Mothes O, Denzler J (2017) Visual fish tracking: combining a two-stage graph approach with CNN-features, pp 1–6

  • Jalal A, Salman A, Mian A, Shortis M, Shafait F (2020) Fish detection and species classification in underwater environments using deep learning with temporal information. Ecol Inform 57:101088

    Article  Google Scholar 

  • Jin L, Liang H (2017) Deep learning for underwater image recognition in small sample size situations. In: OCEANS 2017

  • Jovanovic V, Svendsen E, Risojevic V, Babic Z (2018) Splash detection in fish plants surveillance videos using deep learning. In: 2018 14th symposium on neural networks and applications, NEUREL 2018, Milentija Popovica 9, Belgrade, Serbia

  • Jovanović V, Svendsen E, Risojević V, Babić Z (2018) Fish population status detection based on deep learning system. In: 2018 14th symposium on neural networks and applications (NEUREL)

  • Kamilaris A, Prenafeta-Boldú FX (2018) Deep learning in agriculture: a survey. Comput Electron Agric 147:70–90

    Article  Google Scholar 

  • Kaur S, Pandey S, Goel S (2018) Plants disease identification and classification through leaf images: a survey. Arch Comput Methods Eng 26(2):507–530

    Article  Google Scholar 

  • Koirala A, Walsh KB, Wang Z, McCarthy C (2019) Deep learning—method overview and review of use for fruit detection and yield estimation. Comput Electron Agric 162:219–234

    Article  Google Scholar 

  • Krizhevsky A, Sutskever I, Hinton GE (2017) ImageNet classification with deep convolutional neural networks. Commun ACM 60(6):84–90

    Article  Google Scholar 

  • Lauder GV (2015) Fish locomotion: recent advances and new directions. In: Carlson CA, Giovannoni SJ (eds) Annual review of marine science, vol 7, pp 521–545

  • LeCun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient-based learning applied to document recognition. Proc IEEE 86(11):2278–2324

    Article  Google Scholar 

  • Lee H, Park M, Kim J (2016) Plankton classification on imbalanced large scale database via convolutional neural networks with transfer learning. In: International conference on image processing, pp 3713–3717

  • Li B, Ng T, Li X, Tan S, Huang J (2015) Statistical model of JPEG noises and its application in quantization step estimation. IEEE Trans Image Process 24(5):1471–1484

    Article  MathSciNet  MATH  Google Scholar 

  • Li X, Shang M, Hao J, Yang Z (2016) Accelerating fish detection and recognition by sharing CNNs with objectness learning. In: OCEANS 2016—Shanghai

  • Li D, Hao Y, Duan Y (2020a) Nonintrusive methods for biomass estimation in aquaculture with emphasis on fish: a review. Rev Aquac 12(3):1390–1411

    Article  Google Scholar 

  • Li D, Wang Z, Wu S, Miao Z, Du L, Duan Y (2020b) Automatic recognition methods of fish feeding behavior in aquaculture: a review. Aquaculture 528:735508

    Article  Google Scholar 

  • Li J, Xu C, Jiang L, Xiao Y, Deng L, Han Z (2020c) Detection and analysis of behavior trajectory for sea cucumbers based on deep learning. IEEE Access 8:18832–18840

    Article  Google Scholar 

  • Liang Y, Timofte R, Wang J, Zhou S, Gong Y, Zheng N (2021) Single-Image super-resolution-When model adaptation matters. Pattern Recogn 116:107931

    Article  Google Scholar 

  • Liawatimena S, Heryadi Y, Lukas, Trisetyarso A, Wibowo A, Abbas BS, Barlian E (2018) A fish classification on images using transfer learning and matlab. In: 2018 Indonesian association for pattern recognition international conference (INAPR)

  • Liu Z, Cheng F, Zhang W (2016) Identification of soft shell shrimp based on deep learning. In: 2016 ASABE annual international meeting.

  • Liu Z, Jia X, Xu X (2019) Study of shrimp recognition methods using smart networks. Comput Electron Agricult 165:104926

    Article  Google Scholar 

  • Lu H, Uemura T, Wang D, Zhu J, Huang Z, Kim H (2020) Deep-sea organisms tracking using dehazing and deep learning. Mobile Netw Appl 25(3):1008–1015

    Article  Google Scholar 

  • Ma Y, Zhang P, Tang Y (2018) Research on fish image classification based on transfer learning and convolutional neural network model. In: 2018 14th international conference on natural computation, fuzzy systems and knowledge discovery (ICNC-FSKD)

  • Mahmood A, Bennamoun M, An S, Sohel F, Boussaid F, Hovey R, Kendrick G, Fisher RB (2016) Coral classification with hybrid feature representations. In: 23rd IEEE international conference on image processing

  • Måløy H, Aamodt A, Misimi E (2019) A spatio-temporal recurrent network for salmon feeding action recognition from underwater videos in aquaculture. Comput Electron Agric 167:105087

    Article  Google Scholar 

  • Mandal R, Connolly RM, Schlacher TA, Stantic B (2018) Assessing fish abundance from underwater video using deep neural networks. In: Proceedings of the international joint conference on neural networks

  • Meng L, Hirayama T, Oyanagi S (2018) Underwater-drone with panoramic camera for automatic fish recognition based on deep learning. IEEE Access 6:17880–17886

    Article  Google Scholar 

  • Miao J, Xu S, Zou B, Qiao Y (2021) ResNet based on feature-inspired gating strategy. Multimedia Tools Appl 1–18

  • Miyazono T, Saitoh T (2018) Fish species recognition based on CNN using annotated image. Appl Comput Intell Soft Comput 449:156–163

    Google Scholar 

  • Monkman GG, Hyder K, Kaiser MJ, Vidal FP (2019) Using machine vision to estimate fish length from images using regional convolutional neural networks. Methods Ecol Evol 10(12):2045–2056

    Article  Google Scholar 

  • Munro P, Zipser D (1989) Image compression by back propagation: an example of extensional programming. Models Cognit Rev Cogniti Sci 1(208):1

    Google Scholar 

  • Pacal I, Karaboga D, Basturk A, Akay B, Nalbantoglu U (2020) A comprehensive review of deep learning in colon cancer. Comput Biol Med 126:104003

    Article  Google Scholar 

  • Paoletti ME, Haut JM, Plaza J, Plaza A (2019) Deep learning classifiers for hyperspectral imaging: a review. ISPRS J Photogramm Remote Sens 158:279–317

    Article  Google Scholar 

  • Pereira TD, Aldarondo DE, Willmore L, Kislin M, Wang SSH, Murthy M, Shaevitz JW (2019) Fast animal pose estimation using deep neural networks. Nat Methods 16(1):117-+

    Article  Google Scholar 

  • Qian ZM, Cheng XE, Chen YQ (2014) Automatically detect and track multiple fish swimming in shallow water with frequent occlusion. PLoS ONE 9(9):e106506

    Article  Google Scholar 

  • Qin H, Li X, Liang J, Peng Y, Zhang C (2016) DeepFish: accurate underwater live fish recognition with a deep architecture. Neurocomputing 187:49–58

    Article  Google Scholar 

  • Rachmatullah MN, Supriana I (2018) Low resolution image fish classification using convolutional neural network. In: 5th international conference on advanced informatics: concepts theory and applications, ICAICTA 2018, pp 78–83

  • Rasmussen C, Zhao J, Ferraro D, Trembanis A (2017) Deep census: AUV-based scallop population monitoring. In: Proceedings of the IEEE international conference on computer vision workshops, pp 2865–2873

  • Rauf HT, Lali MIU, Zahoor S, Shah SZH, Rehman AU, Bukhari SAC (2019) Visual features based automated identification of fish species using deep convolutional neural networks. Comput Electron Agricult 167:105075

    Article  Google Scholar 

  • Romero-Ferrero F, Bergomi MG, Hinz RC, Heras FJH, de Polavieja GG (2019) idtracker.ai: tracking all individuals in small or large collectives of unmarked animals. Nat Methods 16(2):179-+

    Article  Google Scholar 

  • Saberioon M, Gholizadeh A, Cisar P, Pautsina A, Urban J (2017) Application of machine vision systems in aquaculture with emphasis on fish: state-of-the-art and key issues. Rev Aquac 9(4):369–387

    Article  Google Scholar 

  • Salman A, Jalal A, Shafait F, Mian A, Shortis M, Seager J, Harvey E (2016) Fish species classification in unconstrained underwater environments based on deep learning. Limnol Oceanogr Methods 14(9):570–585

    Article  Google Scholar 

  • Sarigül M, Avci M (2017) Comparison of different deep structures for fish classification. Int J Comput Theory Eng 9(5):362–366

    Article  Google Scholar 

  • Schneider S, Taylor GW, Linquist S, Kremer SC (2019) Past, present and future approaches using computer vision for animal re-identification from camera trap data. Methods Ecol Evol 10(4):461–470

    Article  Google Scholar 

  • Shu J, Chen ZY, Xu CH, Liu W (2018) Recognition method of fish image with dynamic deformation based on depth learning network model. J Coastal Res 83(10083):397–401

    Google Scholar 

  • Siddiqui SA, Salman A, Malik MI, Shafait F, Mian A, Shortis MR, Harvey ES, Browman H (2018) Automatic fish species classification in underwater videos: exploiting pre-trained deep neural network models to compensate for limited labelled data. ICES J Mar Sci 75(1):374–389

    Article  Google Scholar 

  • Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556

  • Singh AK, Ganapathysubramanian B, Sarkar S, Singh A (2018) Deep learning for plant stress phenotyping: trends and future perspectives. Trends Plant Sci 23(10):883–898

    Article  Google Scholar 

  • Smolensky P (1986) Information processing in dynamical systems: foundations of harmony theory. Colorado Univ at Boulder Dept of Computer Science

  • Suharto E, Suhartono, Widodo AP, Sarwoko EA (2020) The use of mobilenet v1 for identifying various types of freshwater fish. J Phys Conf Ser 1524:012105

  • Sun X, Shi J, Dong J, Wang X (2016) Fish recognition from low-resolution underwater images. In: 9th international congress on image and signal processing, biomedical engineering and informatics, CISP-BMEI 2016, Datong, China

  • Sung M, Yu S-C, Girdhar Y (2017) Vision based real-time fish detection using convolutional neural network. In: OCEANS 2017—Aberdeen

  • Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A (2015) Going deeper with convolutions. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1–9

  • Szegedy C, Ioffe S, Vanhoucke V, Alemi AA (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence

  • Tamou AB, Benzinou A, Nasreddine K, Ballihi L (2018) Transfer learning with deep convolutional neural network for underwater live fish recognition. In: 2018 IEEE international conference on image processing, applications and systems (IPAS), Sophia Antipolis, France, France

  • Tseng C-H, Hsieh C-L, Kuo Y-F (2020) Automatic measurement of the body length of harvested fish using convolutional neural networks. Biosys Eng 189:36–47

    Article  Google Scholar 

  • Tung C, Hsieh C-L, Kuo Y-F (2017) Sea fish identification using convolutional neural network. In: 2017 ASABE annual international meeting. American society of agricultural and biological engineers, p 1

  • Villon S, Mouillot D, Chaumont M, Darling ES, Subsol G, Claverie T, Villeger S (2018) A deep learning method for accurate and fast identification of coral reef fishes in underwater images. Eco Inform 48:238–244

    Article  Google Scholar 

  • Wang Z, Miao Z, Wu QJ, Wan Y, Tang Z (2014) Low-resolution face recognition: a review. Vis Comput 30(4):359–386

    Article  Google Scholar 

  • Wang G, Hwang J-N, Williams K, Wallace F, Rose CS (2016) Shrinking encoding with two-level codebook learning for fine-grained fish recognition. In: 2nd workshop on computer vision for analysis of underwater imagery, CVAUI 2016, Cancun, Mexico

  • Wang SH, Zhao JW, Chen YQ (2017) Robust tracking of fish schools using CNN for head identification. Multimedia Tools Appl 76(22):23679–23697

    Article  Google Scholar 

  • Wang M, Liu M, Zhang F, Lei G, Guo J, Wang L (2018) Fast classification and detection of fish images with YOLOv2. In: 2018 OCEANS-MTS/IEEE Kobe Techno-Oceans (OTO), pp 1–4

  • Wang C, Liu B, Liu L, Zhu Y, Hou J, Liu P, Li X (2021a) A review of deep learning used in the hyperspectral image analysis for agriculture. Artif Intell Rev 54:5205–5253

    Article  Google Scholar 

  • Wang H, Wu C, Chi J, Yu X, Hu Q, Wu H (2021b) Image super-resolution using multi-granularity perception and pyramid attention networks. Neurocomputing 443:247–261

    Article  Google Scholar 

  • Wang S, Wang Y, Liu Y, Li L (2021c) SAR image change detection based on sparse representation and a capsule network. Remote Sens Lett 12(9):890–899

    Article  Google Scholar 

  • Xia X, Zhao Y, Hu Z, Wang Z, Yu C, Bai Y (2019) Fish behavior tracking algorithm based on multi-domain deep convolutional neural network, pp 73–78

  • Xiong W, Yi L-C, Tang Z-H, Fu S-J (2019) Numerical ability and improvement through interindividual cooperation varied between two cyprinid fish species, qingbo and crucian carp. PeerJ 7:e6619

    Article  Google Scholar 

  • Xu Z, Cheng XE (2017) Zebrafish tracking using convolutional neural networks. Sci Rep 7(1):1–11

    Google Scholar 

  • Xu L, Bennamoun M, An S, Sohel FA, Boussaid F (2018) Classification of corals in reflectance and fluorescence images. In: IEEE international conference on acoustics, speech and signal processing—proceedings, pp 1493–1497

  • Xu W, Zhu Z, Ge F, Han Z, Li J (2020) Analysis of behavior trajectory based on deep learning in ammonia environment for fish. Sensors 20(16):4425

    Article  Google Scholar 

  • Yang J, Guo Y, Wang X (2019a) Feature extraction of hyperspectral images based on deep Boltzmann machine. IEEE Geosci Remote Sens Lett 17(6):1077–1081

    Article  Google Scholar 

  • Yang W, Zhang X, Tian Y, Wang W, Xue J-H, Liao Q (2019b) Deep learning for single image super-resolution: a brief review. IEEE Trans Multimedia 21(12):3106–3121

    Article  Google Scholar 

  • Yang L, Liu Y, Yu H, Fang X, Song L, Li D, Chen Y (2021a) Computer vision models in intelligent aquaculture with emphasis on fish detection and behavior analysis: a review. Arch Comput Methods Eng 28(4):2785–2816

    Article  MathSciNet  Google Scholar 

  • Yang X, Zhang S, Liu J, Gao Q, Dong S, Zhou C (2021b) Deep learning for smart fish farming: applications, opportunities and challenges. Rev Aquac 13(1):66–90

    Article  Google Scholar 

  • Yusup IM, Iqbal M, Jaya I (2020) Real-time reef fishes identification using deep learning. IOP Conf Ser Earth Environ Sci 429:012046

    Article  Google Scholar 

  • Zhang K, Zuo W, Chen Y, Meng D, Zhang L (2017) Beyond a gaussian denoiser: residual learning of deep CNN for image denoising. IEEE Trans Image Process 26(7):3142–3155

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang N, Ding S, Zhang J, Xue Y (2018) An overview on restricted Boltzmann machines. Neurocomputing 275:1186–1199

    Article  Google Scholar 

  • Zhang H, Yu F, Sun J, Shen X, Li K (2020a) Deep learning for sea cucumber detection using stochastic gradient descent algorithm. European J Remote Sens 53(sup1):53–62

  • Zhang S, Yang X, Wang Y, Zhao Z, Liu J, Liu Y, Sun C, Zhou C (2020b) Automatic fish population counting by machine vision and a hybrid deep neural network model. Animals 10(2):364

    Article  Google Scholar 

  • Zhao J, Bao W, Zhang F, Zhu S, Liu Y, Lu H, Shen M, Ye Z (2018) Modified motion influence map and recurrent neural network-based monitoring of the local unusual behaviors for fish school in intensive aquaculture. Aquaculture 493:165–175

    Article  Google Scholar 

  • Zhao X, Yan S, Gao Q (2019) An algorithm for tracking multiple fish based on biological water quality monitoring. IEEE Access 7:15018–15026

    Article  Google Scholar 

  • Zhao M, Wen Y-W, Ng M, Li H (2020) A nonlocal low rank model for poisson noise removal. Inverse Probl Imaging 15(3):519–537

    Article  MathSciNet  MATH  Google Scholar 

  • Zheng Z, Guo C, Zheng X, Yu Z, Wang W, Zheng H, Fu M, Zheng B (2018) Fish recognition from a vessel camera using deep convolutional neural network and data augmentation. In: 2018 OCEANS - MTS/IEEE Kobe Techno-Oceans, OCEANS - Kobe 2018, Kobe, Japan

  • Zhou C, Sun C, Lin K, Xu D, Guo Q, Chen L, Yang X (2018a) Handling water reflections for computer vision in aquaculture. Trans ASABE 61(2):469–479

    Article  Google Scholar 

  • Zhou C, Xu D, Lin K, Sun C, Yang X (2018b) Intelligent feeding control methods in aquaculture with an emphasis on fish: a review. Rev Aquac 10(4):975–993

    Article  Google Scholar 

  • Zhou C, Xu D, Chen L, Zhang S, Sun C, Yang X, Wang Y (2019) Evaluation of fish feeding intensity in aquaculture using a convolutional neural network and machine vision. Aquaculture 507:457–465

    Article  Google Scholar 

  • Zhuang P, Wang Y, Qiao Y (2018) WildFish: a large benchmark for fish recognition in the wild. In: Proceedings of the 26th ACM international conference on Multimedia, pp 1301–1309

  • Zion B (2012) The use of computer vision technologies in aquaculture—a review. Comput Electron Agric 88:125–132

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by National Key R&D Program of China “Next generation precision aquaculture: R&D on intelligent measurement, control and equipment technologies” [2017YFE0122100]; Research on the rapid detection mechanism and method of trace-level toxic nitrogen in aquaculture water based on SERS optopole [2018QC188]. The authors also would like to thank Charlesworth Author Services for providing an English-language edit of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daoliang Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, D., Du, L. Recent advances of deep learning algorithms for aquacultural machine vision systems with emphasis on fish. Artif Intell Rev 55, 4077–4116 (2022). https://doi.org/10.1007/s10462-021-10102-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10462-021-10102-3

Keywords

Navigation