Skip to main content
Log in

Design possibilities and challenges of DNN models: a review on the perspective of end devices

  • Published:
Artificial Intelligence Review Aims and scope Submit manuscript

Abstract

Deep Neural Network (DNN) models for both resource-rich environments and resource-constrained devices have become abundant in recent years. As of now, the literature on different available options for the design, development, and deployment of DNN models to resource constrained-end devices is limited and demands extensive further study. This paper reviews vital research efforts for the design of DNN models while deploying them at the end devices such as smart cameras for real-time object detection tasks. The design ideas include the types of DNN models, hardware and software requirements for the development, resource constraints imposed by the computing devices, and the optimization techniques required for the efficient processing of DNN. The study also aims to conduct a systematic literature review on current trends in different real-time applications of DNN models and explores the following four dimensions: (1) DNN model perspective: to associate appropriate DNN models with the proper hardware to achieve optimal throughput. (2) Hardware perspective: to answer different available options in hardware platforms for achieving on-device intelligence. (3) Resources and optimization perspective: to analyze the type of resource limitations in hardware platforms and the use of optimization techniques to overcome the performance issues. (4) Application perspective: to understand the real-time uses of DNN models in different application domains. This work also explores different performance measures that need to be considered for on-device intelligence and provides possible future directions for the challenges reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  • Aguiar A, Santos FN, Sousa AJMD, Oliveira PM, Santos LC (2020) Visual trunk detection using transfer learning and a deep learning-based coprocessor. IEEE Acc 8:77308–77320

    Article  Google Scholar 

  • Almeida M, Laskaridis S, Leontiadis I, Venieris SI, Lane N (2019) Embench: Quantifying performance variations of deep neural networks across modern commodity devices. ArXiv:abs/1905.07346

  • Amodei D, Ananthanarayanan S, Anubhai R, Bai J, Battenberg E, Case C, Casper J, Catanzaro B, Cheng Q, Chen G, Chen J, Chen J, Chen Z, Chrzanowski M, Coates A, Diamos G, Ding K, Du N, Elsen E, Engel J, Fang W, Fan L, Fougner C, Gao L, Gong C, Hannun A, Han T, Johannes L, Jiang B, Ju C, Jun B, LeGresley P, Lin L, Liu J, Liu Y, Li W, Li X, Ma D, Narang S, Ng A, Ozair S, Peng Y, Prenger R, Qian S, Quan Z, Raiman J, Rao V, Satheesh S, Seetapun D, Sengupta S, Srinet K, Sriram A, Tang H, Tang L, Wang C, Wang J, Wang K, Wang Y, Wang Z, Wang Z, Wu S, Wei L, Xiao B, Xie W, Xie Y, Yogatama D, Yuan B, Zhan J, Zhu Z (2016) Deep speech 2 : End-to-end speech recognition in english and mandarin. In: Balcan MF, Weinberger KQ (eds) Proceedings of The 33rd International Conference on Machine Learning, PMLR, New York, New York, USA, Proceedings of Machine Learning Research, vol 48, p 173–182, http://proceedings.mlr.press/v48/amodei16.html

  • Bahdanau D, Cho K, Bengio Y (2015) Neural machine translation by jointly learning to align and translate. In: Bengio Y, LeCun Y (eds) 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, arXiv:1409.0473

  • Barry B, Brick C, Connor F, Donohoe D, Moloney D, Richmond R, ORiordan M, Toma V (2015) Always-on vision processing unit for mobile applications. IEEE Micro 35:56–66

    Article  Google Scholar 

  • Bo W, Ma F, Ge L, Ma H, Hongxia W, Mohamed MA (2021) Icing-edgenet: a pruning lightweight edge intelligent method of discriminative driving channel for ice thickness of transmission lines. IEEE Trans on Instrum and Measur 70:1–12

    Google Scholar 

  • Capra M, Bussolino B, Marchisio A, Shafique M, Masera G, Martina M (2020) An updated survey of efficient hardware architectures for accelerating deep convolutional neural networks. Future Int 12:113

    Article  Google Scholar 

  • Cass S (2019) Taking ai to the edge: googles tpu now comes in a maker-friendly package. IEEE Spectrum 56:16–17

    Google Scholar 

  • Chaber P, Ławryńczuk M (2018) Pruning of recurrent neural models: an optimal brain damage approach. Nonlin Dyn 92:763–780

    Article  Google Scholar 

  • Chen T, Li M, Li Y, Lin M, Wang N, Wang M, Xiao T, Xu B, Zhang C, Zhang Z (2015) Mxnet: A flexible and efficient machine learning library for heterogeneous distributed systems. ArXiv:abs/1512.01274

  • Chen X, Yao L, McAuley J, Zhou G, Wang X (2021) A survey of deep reinforcement learning in recommender systems: A systematic review and future directions. ArXiv:abs/2109.03540

  • Chen Y, Xie Y, Song L, Chen F, Tang T (2020) A survey of accelerator architectures for deep neural networks. Engineering 6:264–274

    Article  Google Scholar 

  • Cheng K, Wang YC (2011) Using mobile gpu for general-purpose computing - a case study of face recognition on smartphones.In: Proceedings of 2011 International Symposium on VLSI Design, Automation and Test p 1–4

  • Cho K, Jang HJ (2020) Comparison of different input modalities and network structures for deep learning-based seizure detection. Scientific Reports 10

  • Choudhary T, Mishra V, Goswami A, Jagannathan S (2020) A comprehensive survey on model compression and acceleration. Art Intell Rev p 1–43

  • Chu T, Wang J, Codecà L, Li Z (2020) Multi-agent deep reinforcement learning for large-scale traffic signal control. IEEE Trans Intell Transp Syst 21:1086–1095

    Article  Google Scholar 

  • Courbariaux M, Bengio Y, David JP (2015) Binaryconnect: Training deep neural networks with binary weights during propagations. In: NIPS

  • Crowder JA, Carbone J, Friess S (2019) Methodologies for continuous, life-long machine learning for ai systems. Artificial Psychology

  • Deng W, Liu H, Xu J, Zhao H, Song Y (2020) An improved quantum-inspired differential evolution algorithm for deep belief network. IEEE Trans Instrum Measur 69:7319–7327

    Article  Google Scholar 

  • Dhar S, Guo J, Liu J, Tripathi S, Kurup U, Shah M (2019) On-device machine learning: An algorithms and learning theory perspective. ArXiv:abs/1911.00623

  • Ding W, Huang Z, Huang Z, Tian L, Wang H, Feng S (2019) Designing efficient accelerator of depthwise separable convolutional neural network on fpga. J Syst Archit 97:278–286

    Article  Google Scholar 

  • Divya P, Rajan DP, Kumar NS (2020) Analysis of machine and deep learning approaches for credit card fraud detection. ICCCE 2020. P 243–254

  • Erickson BJ (2019) Deep learning and machine learning in imaging: Basic principles. Deep learning and machine learning in imaging: Basic principles. P 39–46

  • Erol B, Majumdar A, Lwowski J, Benavidez P, Rad P, Jamshidi M (2018) Improved Deep Neural Network Object Tracking System for Applications in Home Robotics, p 369–395

  • Faraone J, Gambardella G, Fraser NJ, Blott M, Leong PHW, Boland D (2018) Customizing low-precision deep neural networks for fpgas. In: 2018 28th International Conference on Field Programmable Logic and Applications (FPL) p 97–973

  • Feng J, Li D, Chen J, Zhang X, Tang X, Wu X (2019) Hyperspectral band selection based on ternary weight convolutional neural network. In: IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium p 3804–3807

  • Fischer A, Igel C (2012) An introduction to restricted boltzmann machines. In: CIARP

  • Gao Y, Wu L (2021) Efficiently mastering the game of nogo with deep reinforcement learning supported by domain knowledge. Electronics. 10(13):1533

    Article  Google Scholar 

  • Gholami A, Kwon K, Wu B, Tai Z, Yue X, Jin PH, Zhao S, Keutzer K (2018) Squeezenext: Hardware-aware neural network design. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW) p 1719–171909

  • Goel A, Tung C, Lu YH, Thiruvathukal GK (2020) A survey of methods for low-power deep learning and computer vision. In: 2020 IEEE 6th World Forum on Internet of Things (WF-IoT) p 1–6

  • Goodfellow IJ, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y (2014) Generative adversarial nets. In: Proceedings of the 27th International Conference on Neural Information Processing Systems - Volume 2, MIT Press, Cambridge, MA, USA, NIPS’14, p 2672-2680

  • Goodfellow IJ, Bengio Y, Courville A (2016) Deep Learning. MIT Press, Cambridge, MA, USA, http://www.deeplearningbook.org

  • Han F, Yao J, Zhu H, Wang C (2020) Marine organism detection and classification from underwater vision based on the deep cnn method. Math Probl Eng 2020:1–11

    Google Scholar 

  • Han S, Pool J, Tran J, Dally WJ (2015) Learning both weights and connections for efficient neural networks. In: Proceedings of the 28th International Conference on Neural Information Processing Systems - Volume 1, MIT Press, Cambridge, MA, USA, NIPS’15, p 1135-1143

  • Han S, Mao H, Dally W (2016) Deep compression: Compressing deep neural network with pruning, trained quantization and huffman coding. arXiv Computer Vision and Pattern Recognition

  • Hasselt HV, Guez A, Silver D (2016) Deep reinforcement learning with double q-learning. ArXiv:abs/1509.06461

  • He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), p 770–778, https://doi.org/10.1109/CVPR.2016.90

  • Hinton GE, Vinyals O, Dean J (2015) Distilling the knowledge in a neural network. ArXiv:abs/1503.02531

  • Howard AG, Sandler M, Chu G, Chen LC, Chen B, Tan M, Wang W, Zhu Y, Pang R, Vasudevan V, Le QV, Adam H (2019) Searching for mobilenetv3. In: 2019 IEEE/CVF International Conference on Computer Vision (ICCV) p 1314–1324

  • Hu J, Shen L, Albanie S, Sun G, Wu E (2020) Squeeze-and-excitation networks. IEEE Trans Patt Anal Mach Intell 42:2011–2023

    Article  Google Scholar 

  • Huang G, Liu Z, Weinberger KQ (2017) Densely connected convolutional networks. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) p 2261–2269

  • Huang G, Liu S, Maaten LVD, Weinberger KQ (2018) Condensenet: An efficient densenet using learned group convolutions. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition p 2752–2761

  • Huang SM, Chan YW, Chang CH, Kang TC, Yang CT, Tsai YT (2019) A holistic and local feature learning method for machine health monitoring with convolutional bi-directional lstm networks. International Conference on Frontier Computing. P 382–388

  • Iandola FN, Han S, Moskewicz MW, Ashraf K, Dally WJ, Keutzer K (2016) Squeezenet: Alexnet-level accuracy with 50x fewer parameters and \(<\) 0.5 mb model size

  • Jiang Z, Chen T, Li M (2018) Efficient deep learning inference on edge devices. ACM SysML

  • Jinguji A, Sada Y, Nakahara H (2019) Real-time multi-pedestrian detection in surveillance camera using fpga. In: 2019 29th International Conference on Field Programmable Logic and Applications (FPL) p 424–425

  • Jouppi N, Young C, Patil N, Patterson DA (2018) Motivation for and evaluation of the first tensor processing unit. IEEE Micro 38:10–19

    Article  Google Scholar 

  • Kalgaonkar P, El-Sharkawy M (2021) Condensenext: An ultra-efficient deep neural network for embedded systems. In: 2021 IEEE 11th Annual Computing and Communication Workshop and Conference (CCWC) p 0524–0528

  • Kang Y, Hauswald J, Gao C, Rovinski A, Mudge TN, Mars J, Tang L (2017) Neurosurgeon: Collaborative intelligence between the cloud and mobile edge. In:Proceedings of the Twenty-Second International Conference on Architectural Support for Programming Languages and Operating Systems

  • Kavitha P, Rubini P (2021) A comprehensive literature survey for deep learning approaches to agricultural applications. World Rev Sci, Technol Sustain Develop 1:1

    Article  Google Scholar 

  • Khan A, Sohail A, Zahoora U, Qureshi AS (2020) A survey of the recent architectures of deep convolutional neural networks. Art Intell Rev p 1 – 62

  • Kim Y, Choi JS, Kim M (2019) A real-time convolutional neural network for super-resolution on fpga with applications to 4k uhd 60 fps video services. IEEE Trans Circ Syst Video Technol 29:2521–2534

    Article  Google Scholar 

  • Kristiani E, Yang C, Nguyen KLP (2020) Optimization of deep learning inference on edge devices. In: 2020 International Conference on Pervasive Artificial Intelligence (ICPAI) p 264–267

  • Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. Commun ACM 60:84–90

    Article  Google Scholar 

  • Lechner M, Jantsch A, Dinakarrao SMP (2019) Resconn: Resource-efficient fpga-accelerated cnn for traffic sign classification. In: 2019 Tenth International Green and Sustainable Computing Conference (IGSC) p 1–6

  • Lee EG, Miyashita D, Chai E, Murmann B, Wong S (2017) Lognet: Energy-efficient neural networks using logarithmic computation. In: 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) p 5900–5904

  • Lei P, Liang J, Guan Z, Wang J, Zheng T (2019) Acceleration of fpga based convolutional neural network for human activity classification using millimeter-wave radar. IEEE Acc 7:88917–88926

    Article  Google Scholar 

  • Leo MD, Sharma S, Maddulety K (2019) Machine learning in banking risk management: a literature review. Risks 7(1):29

    Article  Google Scholar 

  • Li E, Yang L, Wang B, Li J, ti Peng Y (2012) Surf cascade face detection acceleration on sandy bridge processor. In: 2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops p 41–47

  • Li L, Ota K, Dong M (2018) Deep learning for smart industry: efficient manufacture inspection system with fog computing. IEEE Trans Industr Inform 14:4665–4673

    Article  Google Scholar 

  • Li W, Liewig M (2020) A survey of ai accelerators for edge environment. In: WorldCIST

  • Liu C, Zoph B, Shlens J, Hua W, Li L, Fei-Fei L, Yuille A, Huang J, Murphy K (2018) Progressive neural architecture search. In: ECCV

  • Lu L, Xie J, Huang R, Zhang J, Lin W, Liang Y (2019) An efficient hardware accelerator for sparse convolutional neural networks on fpgas. In: 2019 IEEE 27th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM) p 17–25

  • Ma N, Zhang X, Zheng H, Sun J (2018a) Shufflenet v2: Practical guidelines for efficient cnn architecture design. In: ECCV

  • Ma X, Zheng W, Peng Z, Yang J (2019) Fpga-based rapid electroencephalography signal classification system. In: 2019 IEEE 11th International Conference on Advanced Infocomm Technology (ICAIT) p 223–227

  • Ma Y, Suda N, Cao Y, sun Seo J, Vrudhula S (2016) Scalable and modularized rtl compilation of convolutional neural networks onto fpga. In: 2016 26th International Conference on Field Programmable Logic and Applications (FPL) p 1–8

  • Ma Y, Zhou G, Wang S, Zhao H, Jung W (2018) Signfi: Sign language recognition using wifi. Proc ACM Interact Mob Wearable Ubiquitous Technol 2(23):1–21

    Article  Google Scholar 

  • Marantos C, Karavalakis N, Leon V, Tsoutsouras V, Pekmestzi K, Soudris D (2018) Efficient support vector machines implementation on intel/movidius myriad 2. In: 2018 7th International Conference on Modern Circuits and Systems Technologies (MOCAST) p 1–4

  • Marchisio A, Hanif M, Khalid F, Plastiras G, Kyrkou C, Theocharides T, Shafique M (2019) Deep learning for edge computing: Current trends, cross-layer optimizations, and open research challenges. In: 2019 IEEE Computer Society Annual Symposium on VLSI (ISVLSI) p 553–559

  • Marco VS, Taylor B, Wang Z, Elkhatib Y (2020) Optimizing deep learning inference on embedded systems through adaptive model selection. ACM Trans Emb Comput Syst (TECS) 19:1–28

    Article  Google Scholar 

  • Mattson P, Tang H, Wei GY, Wu CJ, Reddi V, Cheng C, Coleman CA, Diamos G, Kanter D, Micikevicius P, Patterson D, Schmuelling G (2020) Mlperf: an industry standard benchmark suite for machine learning performance. IEEE Micro 40:8–16

    Article  Google Scholar 

  • Mehta S, Rastegari M, Shapiro L, Hajishirzi H (2019) Espnetv2: A light-weight, power efficient, and general purpose convolutional neural network. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) p 9182–9192

  • Miklosik A, Kuchta M, Evans N, Zak S (2019) Towards the adoption of machine learning-based analytical tools in digital marketing. IEEE Acc 7:85705–85718

    Article  Google Scholar 

  • Mittal S (2019) A survey on optimized implementation of deep learning models on the nvidia jetson platform. J Syst Archit 97:428–442

    Article  Google Scholar 

  • Mittal S, Vaishay S (2019) A survey of techniques for optimizing deep learning on gpus. J Syst Archit 99:101635

    Article  Google Scholar 

  • Mnih V, Kavukcuoglu K, Silver D, Rusu AA, Veness J, Bellemare MG, Graves A, Riedmiller MA, Fidjeland A, Ostrovski G, Petersen S, Beattie C, Sadik A, Antonoglou I, King H, Kumaran D, Wierstra D, Legg S, Hassabis D (2015) Human-level control through deep reinforcement learning. Nature 518:529–533

    Article  Google Scholar 

  • Mnih V, Badia AP, Mirza M, Graves A, Lillicrap TP, Harley T, Silver D, Kavukcuoglu K (2016) Asynchronous methods for deep reinforcement learning. In: ICML

  • Mohamed EA, Ahmed I, Mehdi RAK, Hussain H (2021) Impact of corporate performance on stock price predictions in the uae markets: Neuro-fuzzy model. Int J Intell Syst Acc, Fin Manag 28:52–71

    Article  Google Scholar 

  • Moher D, Liberati A, Tetzlaff J, Altman D (2009) Preferred reporting items for systematic reviews and meta-analyses: the prisma statement. The BMJ 339

  • Mousouliotis PG, Petrou L (2020) Cnn-grinder: from algorithmic to high-level synthesis descriptions of cnns for low-end-low-cost fpga socs. Microproc Microsyst 73:102990

    Article  Google Scholar 

  • Nguyen DT, Nguyen T, Kim H, Lee H (2019) A high-throughput and power-efficient fpga implementation of yolo cnn for object detection. IEEE Trans Very Large Scale Integr (VLSI) Syst 27:1861–1873

    Article  Google Scholar 

  • Pan SJ, Yang Q (2010) A survey on transfer learning. IEEE Trans on Knowl and Data Eng 22(10):1345–1359. https://doi.org/10.1109/TKDE.2009.191

    Article  Google Scholar 

  • Park K, Jang W, Lee W, Nam K, Seong K, Chai K, Li W (2020) Real-time mask detection on google edge tpu. ArXiv:abs/2010.04427

  • Pham M, Kim J, Kim C (2020) Deep learning-based bearing fault diagnosis method for embedded systems. Sensors 20(23):6886

    Article  Google Scholar 

  • Rastegari M, Ordonez V, Redmon J, Farhadi A (2016) Xnor-net: Imagenet classification using binary convolutional neural networks. In: ECCV, P 525–542

  • Real E, Aggarwal A, Huang Y, Le QV (2019) Regularized evolution for image classifier architecture search. In: AAAI

  • Rezaei S, Liu X (2019) Security of deep learning methodologies: Challenges and opportunities. ArXiv:abs/1912.03735

  • Sak H, Senior A, Beaufays F (2014) Long short-term memory based recurrent neural network architectures for large vocabulary speech recognition. ArXiv:abs/1402.1128

  • Salama WM, Aly MH (2021) Deep learning in mammography images segmentation and classification: automated cnn approach. Alexandria Eng J 60:4701–4709

    Article  Google Scholar 

  • Sandler M, Howard AG, Zhu M, Zhmoginov A, Chen LC (2018) Mobilenetv2: Inverted residuals and linear bottlenecks. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition p 4510–4520

  • Shah AA, Zaidi Z, Chowdhry BS, Daudpoto J (2016) Real time face detection/monitor using raspberry pi and matlab.In: 2016 IEEE 10th International Conference on Application of Information and Communication Technologies (AICT) p 1–4

  • Shahshahani M, Goswami P, Bhatia D (2018) Memory optimization techniques for fpga based cnn implementations.In: 2018 IEEE 13th Dallas Circuits and Systems Conference (DCAS) p 1–6

  • Si J, Yfantis E, Harris S (2019) A ss-cnn on an fpga for handwritten digit recognition.In: 2019 IEEE 10th Annual Ubiquitous Computing, Electronics and Mobile Communication Conference, UEMCON p 0088–0093

  • Simonyan K, Zisserman A (2015) Very deep convolutional networks for large-scale image recognition. CoRR abs/1409.1556

  • Song J, Wang X, Zhao Z, Li W, Zhi T (2020) A survey of neural network accelerator with software development environments. J Semicond 41:021403

    Article  Google Scholar 

  • Song M, Hu Y, Chen H, Li T (2017) Towards pervasive and user satisfactory cnn across gpu microarchitectures. In: 2017 IEEE International Symposium on High Performance Computer Architecture (HPCA), p 1–12, https://doi.org/10.1109/HPCA.2017.52

  • Song X, Kanasugi H, Shibasaki R (2016) Deeptransport: Prediction and simulation of human mobility and transportation mode at a citywide level. In: IJCAI

  • SP T, (2019) Enhanced data parallelism for irregular memory access optimization on gpu. J Parallel Distrb Comp 73(1):42–51

  • Sreenu G, Durai MAS (2019) Intelligent video surveillance: a review through deep learning techniques for crowd analysis. J Big Data 6:1–27

    Article  Google Scholar 

  • Stevens E, Antiga L (2020) Deep learning with pytorch: A practical approach to building neural network models using PyTorch. Packt Publishing Ltd

  • Struharik R, Vukobratovic B, Erdeljan A, Rakanovic D (2020) Conna-hardware accelerator for compressed convolutional neural networks. Microproc Microsyst 73:102991

    Article  Google Scholar 

  • Sun T, Ding S, Xu X (2021) An iterative stacked weighted auto-encoder. Soft Comput 25:4833–4843

    Article  Google Scholar 

  • Sze V, Chen Y, Yang TJ, Emer J (2017) Efficient processing of deep neural networks: a tutorial and survey. Proc of the IEEE 105:2295–2329

    Article  Google Scholar 

  • Sze V, Chen YH, Yang TJ, Emer J (2020) How to evaluate deep neural network processors: tops alone considered harmful. IEEE Solid-State Circ Magazine 12:28–41

    Article  Google Scholar 

  • Szegedy C, Liu W, Jia Y, Sermanet P, Reed SE, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A (2015) Going deeper with convolutions.In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) p 1–9

  • Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z (2016) Rethinking the inception architecture for computer vision.In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) p 2818–2826

  • Szegedy C, Ioffe S, Vanhoucke V, Alemi AA (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: AAAI

  • Talib M, Majzoub S, Nasir Q, Jamal D (2020) A systematic literature review on hardware implementation of artificial intelligence algorithms. The J Supercomp 77:1897–1938

    Article  Google Scholar 

  • Tamizharasan P, Ramasubramanian N (2018) Analysis of large deviations behavior of multi-gpu memory access in deep learning. The J Supercomp 74:2199–2212

    Article  Google Scholar 

  • Tan M, Le QV (2019) Efficientnet: Rethinking model scaling for convolutional neural networks. ArXiv:abs/1905.11946

  • Tan M, Chen B, Pang R, Vasudevan V, Le QV (2019) Mnasnet: Platform-aware neural architecture search for mobile.In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) p 2815–2823

  • Tanzi L, Vezzetti E, Moreno R, Aprato A, Audisio A, Massè A (2020) Hierarchical fracture classification of proximal femur x-ray images using a multistage deep learning approach. European journal of radiology 133:109373

    Article  Google Scholar 

  • Tanzi L, Piazzolla P, Porpiglia F, Vezzetti E (2021) Real-time deep learning semantic segmentation during intra-operative surgery for 3d augmented reality assistance. Int J Comp Ass Radiol Surg 16:1435–1445

    Article  Google Scholar 

  • Tayara H, to Chong K (2020) Improved predicting of the sequence specificities of rna binding proteins by deep learning.In: IEEE/ACM transactions on computational biology and bioinformatics

  • Teerapittayanon S, McDanel B, Kung HT (2016) Branchynet: Fast inference via early exiting from deep neural networks.In: 2016 23rd International Conference on Pattern Recognition (ICPR) p 2464–2469

  • Tian C, Chan WKV (2021) Spatial-temporal attention wavenet: a deep learning framework for traffic prediction considering spatial-temporal dependencies. Iet Intell Transp Syst 15:549–561

    Article  Google Scholar 

  • Trappey AJC, Chen PPJ, Trappey CV, Ma L (2019) A machine learning approach for solar power technology review and patent evolution analysis. Appl Sci 9(7):1478

    Article  Google Scholar 

  • Twinanda AP, Shehata S, Mutter D, Marescaux J, de Mathelin M, Padoy N (2017) Endonet: a deep architecture for recognition tasks on laparoscopic videos. IEEE Trans Med Imag 36:86–97

    Article  Google Scholar 

  • Vaswani A, Shazeer NM, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser L, Polosukhin I (2017) Attention is all you need. ArXiv:abs/1706.03762

  • Véstias M (2019) A survey of convolutional neural networks on edge with reconfigurable computing. Algorithms 12:154

    Article  Google Scholar 

  • Véstias M, Duarte R, Sousa J, Neto H (2020) A fast and scalable architecture to run convolutional neural networks in low density fpgas. Microprocess Microsystems 77:103136

    Article  Google Scholar 

  • Véstias M, Duarte R, Sousa J, Neto H (2020) Moving deep learning to the edge. Algorithms 13:125

    Article  MathSciNet  Google Scholar 

  • Vreča J, Sturm KJX, Gungl E, Merchant F, Bientinesi P, Leupers R, Brezočnik Z (2020) Accelerating deep learning inference in constrained embedded devices using hardware loops and a dot product unit. IEEE Acc 8:165913–165926

    Article  Google Scholar 

  • Wan Z, Li H, He H, Prokhorov DV (2019) Model-free real-time ev charging scheduling based on deep reinforcement learning. IEEE Trans on Smart Grid 10:5246–5257

    Article  Google Scholar 

  • Wang F, Fan X, Wang F, Liu J (2019) Backup battery analysis and allocation against power outage for cellular base stations. IEEE Trans Mob Comp 18:520–533

    Article  Google Scholar 

  • Wang F, Gong W, Liu J (2019) On spatial diversity in wifi-based human activity recognition: A deep learning-based approach. IEEE Int of Things J 6:2035–2047

    Article  Google Scholar 

  • Wang F, Wang F, Ma X, Liu J (2019) Demystifying the crowd intelligence in last mile parcel delivery for smart cities. IEEE Netw 33:23–29

    Article  Google Scholar 

  • Wang F, Zhang C, Wang F, Liu J, Zhu Y, Pang H, Sun L (2020) Deepcast: Towards personalized qoe for edge-assisted crowdcast with deep reinforcement learning. IEEE/ACM Trans Netw 28:1255–1268

    Article  Google Scholar 

  • Wang F, Zhang M, Wang X, Ma X, Liu J (2020) Deep learning for edge computing applications: a state-of-the-art survey. IEEE Acc 8:58322–58336

    Article  Google Scholar 

  • Wang X, Han Y, Leung VC, Niyato D, Yan X, Chen X (2020) Convergence of edge computing and deep learning: a comprehensive survey. IEEE Commun Surv Tutor 22(2):869–904

    Article  Google Scholar 

  • Wu B, Iandola FN, Jin PH, Keutzer K (2017) Squeezedet: Unified, small, low power fully convolutional neural networks for real-time object detection for autonomous driving.In: 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW) p 446–454

  • Wu Y, Yuan M, Dong S, Lin L, Liu Y (2018) Remaining useful life estimation of engineered systems using vanilla lstm neural networks. Neurocomputing 275:167–179

    Article  Google Scholar 

  • Wu YN, Emer JS, Sze V (2019) Accelergy: An Architecture-Level Energy Estimation Methodology for Accelerator Designs. In: IEEE/ACM International Conference On Computer Aided Design (ICCAD)

  • Xia M, Huang Z, Tian L, Wang H, Chang VI, Zhu Y, Feng S (2021) Sparknoc: An energy-efficiency fpga-based accelerator using optimized lightweight cnn for edge computing. J Syst Archit 115:101991

    Article  Google Scholar 

  • Xie S, Girshick RB, Dollár P, Tu Z, He K (2017) Aggregated residual transformations for deep neural networks. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) p 5987–5995

  • Xiong Y, Kim H, Hedau V (2019) Antnets: Mobile convolutional neural networks for resource efficient image classification. ArXiv:abs/1904.03775

  • Xu D, Li T, Li Y, Su X, Tarkoma S, Jiang T, Crowcroft J, Hui P (2020a) Edge intelligence: Architectures, challenges, and applications. arXiv Networking and Internet Architecture

  • Xu K, Fu C, Zhang X, Chen C, Zhang YL, Rong W, Wen Z, Zhou J, Li X, Qiao Y (2020b) admscn: A novel perspective for user intent prediction in customer service bots. In: Proceedings of the 29th ACM International Conference on Information & Knowledge Management

  • Xu K, Wang X, Liu X, Cao C, Li H, Peng H, Wang D (2020c) A dedicated hardware accelerator for real-time acceleration of yolov2. J Real-Time Image Proc 1–12

  • Yan J, He H, Zhong X, Tang Y (2017) Q-learning-based vulnerability analysis of smart grid against sequential topology attacks. IEEE Trans on Inform Forens and Secur 12:200–210

    Article  Google Scholar 

  • Yao H, Tang X, Wei H, Zheng G, Li ZJ (2019) Revisiting spatial-temporal similarity: a deep learning framework for traffic prediction. In: AAAI

  • Zantalis F, Koulouras GE, Karabetsos S, Kandris D (2019) A review of machine learning and iot in smart transportation. Future Int 11:94

    Article  Google Scholar 

  • Zeiler MD, Fergus R (2014) Visualizing and understanding convolutional networks. In: ECCV

  • Zhang M, Zhang F, Lane ND, Shu Y, Zeng X, Fang B, Yan S, Xu H (2020) Deep Learning in the Era of Edge Computing: challenges and Opportunities. John Wiley and Sons Ltd, chap 3:67–78

  • Zhang X, Zhou X, Lin M, Sun J (2018) Shufflenet: An extremely efficient convolutional neural network for mobile devices. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition p 6848–6856

  • Zheng Z, Chen Q, Fan C, Guan N, Vishwanath A, Wang D, Liu F (2019) An edge based data-driven chiller sequencing framework for hvac electricity consumption reduction in commercial buildings. IEEE Transactions on Sustainable Computing

  • Zhu M, yuan Ge D, (2020) Image quality assessment based on deep learning with fpga implementation. Signal Process Image Commun. 83 115780

  • Zitar RA, Nachouki M, Hussain H, Alzboun F (2020) Recurrent neural networks for signature generation. In: 2020 13th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI) p 1093–1097

  • Zoph B, Vasudevan V, Shlens J, Le QV (2018) Learning transferable architectures for scalable image recognition. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition p 8697–8710

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanan Hussain.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hussain, H., Tamizharasan, P.S. & Rahul, C.S. Design possibilities and challenges of DNN models: a review on the perspective of end devices. Artif Intell Rev 55, 5109–5167 (2022). https://doi.org/10.1007/s10462-022-10138-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10462-022-10138-z

Keywords

Navigation