Skip to main content
Log in

Automatic recognition of woven fabric structural parameters: a review

  • Published:
Artificial Intelligence Review Aims and scope Submit manuscript

Abstract

This paper provides a comprehensive review of automatic recognition of woven fabric structural parameters in recent years. Fabric structural parameters mainly include fabric density, weave pattern, color pattern, etc., which need to be pre-set before production and carefully checked during quality control. The analysis of these parameters is considered the most crucial step in the textile industry. The commonly used manual operations based on human eyes and experiences are time-consuming and labor-intensive. In contrast, computer-vision-based methods or other automatic methods hold the advantages of quick response, objective evaluation, and high stability. In this paper, the background and definition of the analysis of fabric structural parameters are first introduced. Secondly, it offers some automated recognition systems and their configurations. Then, it describes an up-to-date survey across the existing methods and performs a comparative study of their characteristics, strengths, and weaknesses. Besides, some evaluation matrixes are provided to evaluate the performance of automatic recognition methods. Finally, the report makes conclusions and discusses future research directions. This review can benefit researchers in understanding and utilizing automated methods to recognize fabric structural parameters. Promisingly, it can also provide some novel ideas for other recognition problems in the textile industry like fabric defect detection, fabric appearance analysis, and fabric inverse modelling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Ajallouian F, Tavanai H, Palhang M, Hosseini S, Sadri S, Matin K (2009) A novel method for the identification of weave repeat through image processing. J Textile Inst 100:195–206

    Article  Google Scholar 

  • Akbar F, Akbar H, Suryana N, Husni M (2011) 3D fabric feature extraction and defect classification using low-cost USB camera. Paper presented at the 2011 International Conference on Graphic and Image Processing, 8285: 828513

  • Akiyama R, Iguro T, Uchiyama S, Magoshi Y, Sakai T (1986) Detection of weave types in woven fabrics by observing optical diffraction patterns. Fiber 42:574–579

    Article  Google Scholar 

  • Aldemir E, Özdemir H, Sarı Z (2018) An improved gray line profile method to inspect the warp–weft density of fabrics. J Textile Inst 1–12

  • Ben Salem Y, Nasri S (2010) Automatic recognition of woven fabrics based on texture and using SVM. SIViP 4:429–434. https://doi.org/10.1007/s11760-009-0132-5

    Article  MATH  Google Scholar 

  • Benco M, Hudec R, Kamencay P, Zachariasova M, Matuska S (2014) An advanced approach to extraction of colour texture features based on GLCM. Int J Adv Rob Syst 11:104

    Article  Google Scholar 

  • BMSVision (2021) Fabric Inspection | BMSvision. https://www.bmsvision.com/products/fabric-inspection. Accessed 09/09 2021

  • Bonetti F, Warnaby G, Quinn L (2018) Augmented reality and virtual reality in physical and online retailing: A review, synthesis and research agenda. In: Augmented reality and virtual reality. Springer, 119–132

  • Boonsirisumpun N, Puarungroj W (2018) Loei fabric weaving pattern recognition using deep neural network. In: 2018 15th International Joint Conference on Computer Science and Software Engineering, 2018:1–6

  • Burges C (1998) A tutorial on support vector machines for pattern recognition. Data Min Knowl Disc 2:121–167. https://doi.org/10.1023/A:1009715923555

    Article  Google Scholar 

  • Burnham DK (1980) Warp and weft: a textile terminology. Royal Ontario Museum, pp 281–285

  • Chen S, Liu M, Zhang S (2019) Fabric patterns recognition based on weft phase difference. In: 2019 Chinese Control Conference (CCC), 2019:7810–7815

  • Chen S, Toyoura M, Terada T, Mao X, Xu G (2020) Image-based textile decoding. Integr Comput-Aided Eng. https://doi.org/10.3233/ICA-200647

  • Cleveland W (1979) Robust locally weighted regression and smoothing scatterplots. J Am Stat Assoc 74:829–836. https://doi.org/10.2307/2286407

    Article  MathSciNet  MATH  Google Scholar 

  • Divyadevi R, Kumar BV (2019) Survey of automated fabric inspection in textile industries. In: 2019 International Conference on Computer Communication and Informatics (ICCCI), 2019. IEEE, pp 1–4

  • Duda RO, Hart PE (1972) Use of the hough transform to detect lines and curves in pictures. Cacm 15:11–15

    Article  MATH  Google Scholar 

  • Dunn J (1973) A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters. Cybern Syst 3:32–57. https://doi.org/10.1080/01969727308546046

    Article  MathSciNet  MATH  Google Scholar 

  • Egmont-Petersen M, Ridder D, Handels H (2002) Image processing with neural networks: a review. Pattern Recogn 35:2279–2301. https://doi.org/10.1016/S0031-3203(01)00178-9

    Article  MATH  Google Scholar 

  • Ezazshahabi N, Latifi M, Tehran MA, Madanipour K (2015) Measurement of yarn density in woven fabrics using fringe projection moiré techniques. Indian J Fibre Text Res 40:203–207

    Google Scholar 

  • Fan Z, Zhang S, Mei J, Liu M (2017) Recognition of woven fabric based on image processing and gabor filters. In2017 IEEE 7th Annual International Conference on CYBER Technology in Automation, Control, and Intelligent Systems (CYBER) 2017 (pp 996–1000). IEEE

  • Fasahat F, Payvandy P (2016) A novel hybrid genetic and imperialist competitive algorithm for structure extraction of woven fabric images. J Text Inst 108:1–13

    Google Scholar 

  • Furferi R, Governi L, Volpe Y (2015) Machine vision-based pilling assessment: a review. J Eng Fibers Fabr 10:155892501501000320

    Google Scholar 

  • Ghane M, Hosseini Ravandi S, Moezzi M (2010) Evaluation of diamond bar patterns on fabric surface using an image analysis technique. J Text Inst 101:2–7

    Article  Google Scholar 

  • Gioi R, Jakubowicz J, Morel J-M, Randall G (2012) LSD: A line segment detector. Image Process Line 2:35–55. https://doi.org/10.5201/ipol.2012.gjmr-lsd

    Article  Google Scholar 

  • González AG, Herrador MÁ (2007) A practical guide to analytical method validation, including measurement uncertainty and accuracy profiles. TrAC, Trends Anal Chem 26:227–238

    Article  Google Scholar 

  • Goyal A (2018) 4: Automation in fabric inspection. In: Nayak R, Padhye R (eds) Automation in garment manufacturing. Woodhead Publishing, pp 75–107. https://doi.org/10.1016/B978-0-08-101211-6.00004-5

  • Gu M, Xu X, Dai W (2017) Design of weft detection system in the stenter machine. In: IOP Conference Series: Earth and Environmental Science, IOP Publishing, 012140

  • Guarnera G, Hall P, Chesnais A, Glencross M (2017) Woven fabric model creation from a single image. ACM Trans Graph 36:1–13. https://doi.org/10.1145/3132187

    Article  Google Scholar 

  • Guo Y, Ge X, Yu M, Yan G, Liu Y (2019) Automatic recognition method for the repeat size of a weave pattern on a woven fabric image. Text Res J 89:2754–2775

    Article  Google Scholar 

  • Han Y, Xu C, Baciu G, Li M (2015) Lightness biased cartoon-and-texture decomposition for textile image segmentation. Neurocomputing 168:575–587

    Article  Google Scholar 

  • Haralick R (2005) Statistical and structural approaches to texture. Published in IEEE, Proceedings 67:786–804

    Article  Google Scholar 

  • Haralick RM, Shanmugam K, Dinstein I (1973) Textural features for image classification. IEEE Trans Syst Man Cybern 3:610–621

    Article  Google Scholar 

  • He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. Proc IEEE Conf Comput Vis Pattern Recognit 2016:770–778. https://doi.org/10.1109/CVPR.2016.90

    Article  Google Scholar 

  • Huang C-C, Liu S-C, Yu W-H (2000) Woven fabric analysis by image processing: Part I: Identification of weave patterns. Text Res J 70:481–485

    Article  Google Scholar 

  • Hussain MAI, Khan B, Wang Z-J, Ding S (2020a) Woven fabric pattern recognition and classification based on deep convolutional neural networks. Electronics 9:10–48. https://doi.org/10.3390/electronics9061048

    Article  Google Scholar 

  • Hussain MAI, Khan B, Wang Z, Ding S (2020b) Woven fabric pattern recognition and classification based on deep convolutional neural networks. Electronics 9:1048

    Article  Google Scholar 

  • Ismail MMB (2017) A survey on content-based image retrieval. (IJACSA) International J Adv Comput Sci Appl 8:159–170

  • Jeong YJ, Jang J (2005) Applying image analysis to automatic inspection of fabric density for woven fabrics. Fibers & Polymers 6:156–161

    Article  Google Scholar 

  • Jevšnik S, Kalaoğlu F, Terliksiz S, Purgaj J (2014) Review of computer models for fabric simulation. Tekstilec 57:300–314

    Article  Google Scholar 

  • Jing J, Liu S, Li P, Li Q, Liu S, Jiang M (2014a) Automatic density detection of woven fabrics via wavelet transform. J Inform Comput Sci 11:2559–2568

    Article  Google Scholar 

  • Jing J, Xu M, Li P, Qi L, Liu S (2014b) Automatic classification of woven fabric structure based on texture feature and PNN. Fibers Polym 15:1092–1098

    Article  Google Scholar 

  • Jing J, Xu M, Li P (2015) Automatic recognition of weave pattern and repeat for yarn-dyed fabric based on KFCM and IDMF. Optik 126:122–131. https://doi.org/10.1016/j.ijleo.2015.07.025

    Article  Google Scholar 

  • Kang TJ, Kim CH, Oh KW (1999) Automatic recognition of fabric weave patterns by digital image analysis. Text Res J 69:77–83

    Article  Google Scholar 

  • Kang TJ, Cho DH, Kim SM (2001) New objective evaluation of fabric smoothness appearance. Text Res J 71:446–453. https://doi.org/10.1177/004051750107100513

    Article  Google Scholar 

  • Kim HS, Park SH, Ha JH, Song TY, Cho SY, Kim YK (2009) Development of a beta gauge system for a fabric density measurement. Appl Radiat Isot 67:1213–1215

    Article  Google Scholar 

  • Kinoshita M, Hashimoto Y, Akiyama R, Uchiyama S (1989) Determination of weave type in woven fabric by digital image processing. Journal of the Textile Machinery Society of Japan 35:1–4

    Article  Google Scholar 

  • Kumah C, Raji RK, Pan R (2019) Review of printed fabric pattern segmentation analysis and application. Autex Res J 1:234–240

    Google Scholar 

  • Kumar A (2008) Computer-vision-based fabric defect detection: a survey. IEEE Trans Industr Electron 55:348–363

    Article  Google Scholar 

  • Kuo J, Shih C-Y, Kao C-Y, Lee J-Y (2005) Color and pattern analysis of printed fabric by an unsupervised clustering method. Text Res J 75:9–12. https://doi.org/10.1177/004051750507500103

    Article  Google Scholar 

  • Kuo C-FJ, Su T-L, Huang Y-J (2007) Computerized color separation system for printed fabrics by using backward-propagation neural network. Fibers Polym 8:529–536

    Article  Google Scholar 

  • Kuo C-FJ, Shih C-Y, Ho C-E, Peng K-C (2010) Application of computer vision in the automatic identification and classification of woven fabric weave patterns. Text Res J 80:2144–2157

    Article  Google Scholar 

  • Kuo C-FJ, Shih C-Y, Huang C-C, Su T-L, Liao I-C (2016) A novel image processing technology for recognizing the weave of fabrics. Text Res J 86:288–301

    Article  Google Scholar 

  • Leaf J, Wu R, Schweickart E, James DL, Marschner S (2018) Interactive design of periodic yarn-level cloth patterns. ACM Trans Graph (TOG) 37:1–15

    Article  Google Scholar 

  • Li PF, Wang J, Zhang HH, Jing JF (2012) Automatic woven fabric classification based on support vector machine. Int Conf Autom Control Artif Intell 2013:581–584

    Google Scholar 

  • Li L, Shan T, Xue L, Wang J, Chen X (2015) Study on woven fabric texture based on Fourier transform and Gabor transform. Key Eng Mater 671:369–377. https://doi.org/10.4028/www.scientific.net/KEM.671.369

    Article  Google Scholar 

  • Li Z, Meng S, Wang L, Zhang N, Gao W (2019) Intelligent recognition of the patterns of yarn-dyed fabric based on LSRT images. J Eng Fibers Fabr 14:155–167

    Google Scholar 

  • Li J, Wang W, Deng N, Xin B (2020) A novel digital method for weave pattern recognition based on photometric differential analysis. Measurement 152:1–32

    Article  Google Scholar 

  • Lim J, Kim S (2011) Analysis of woven fabric structure using image analysis and artificial intelligence. Fibers Polym 12:1062–1068

    Article  Google Scholar 

  • Lin J-J (2002) Applying a co-occurrence matrix to automatic inspection of weaving density for woven fabrics. Text Res J 72:486–490

    Article  Google Scholar 

  • Lindeberg T (1996) Edge detection and ridge detection with automatic scale selection. In: Proceedings of the IEEE conference on computer vision and pattern recognition https://doi.org/10.1109/CVPR.1996.517113

  • LintSense (2021) AI fabric inspecting Robot. http://www.lintsense.com/en/index.html. Accessed 09 09 2021

  • Liu J, Jiang H, Liu X, Chai Z (2014) Automatic measurement for dimensional changes of woven fabrics based on texture. Meas Sci Technol 25:5602. https://doi.org/10.1088/0957-0233/25/1/015602

    Article  Google Scholar 

  • Liu S, Ng T, Sunkavalli K (2015) PatchMatch-based automatic lattice detection for near-regular textures. Proc IEEE Int Conf Comput Vis 2015:181–189. https://doi.org/10.1109/ICCV.2015.29

    Article  Google Scholar 

  • Lloyd S (2006) Least squares quantization in PCM. IEEE Trans Inf Theory 28:129–137

    Article  MathSciNet  MATH  Google Scholar 

  • Luo MR, Cui G, Rigg B (2001) The development of the CIE 2000 colour-difference formula: CIEDE2000. Color Res Appl 26:340–350

    Article  Google Scholar 

  • Luo L, Shao SJ, Shen HL, Xin JH (2013) An unsupervised method for dominant colour region segmentation in yarn-dyed fabrics. Color Technol 129:41–49

    Article  Google Scholar 

  • Luo L, Shen H, Shao S, Xin J (2015) An effective method to segment weft and warp yarns in a multi-colour region of yarn dyed fabric images. Color Technol 131:165–171

    Article  Google Scholar 

  • Luo MR (2014) CIELAB. In: Luo R (ed) Encyclopedia of color science and technology. Springer, Berlin, pp 1–7. https://doi.org/10.1007/978-3-642-27851-8_11-1

  • Malaca P, Rocha LF, Gomes D, Silva J, Veiga G (2019) Online inspection system based on machine learning techniques: real case study of fabric textures classification for the automotive industry. J Intell Manuf 30:351–361

    Article  Google Scholar 

  • Meng S, Pan R, Gao W, Zhou J, Wang J, He W (2019) Woven fabric density measurement by using multi-scale convolutional neural networks. IEEE Access 7:75810–75821

    Article  Google Scholar 

  • Meng S, Pan R, Gao W, Zhou J, Wang J, He W (2020a) A multi-task and multi-scale convolutional neural network for automatic recognition of woven fabric pattern. J Intell Manuf 32(4):1147–1161. https://doi.org/10.1007/s10845-020-01607-9

    Article  Google Scholar 

  • Meng S, Wang J, Pan R, Gao W, He W (2020b) Recognition of the layout of colored yarns in yarn-dyed fabrics. Text Res J 91(1–2):100–114

    Google Scholar 

  • Merhof D, Schneider D (2015) Blind weave detection for woven fabrics. PAA 18:725–737

    MathSciNet  Google Scholar 

  • Metin S, Hakan O, Mete U (2017) Automatic identification of weave patterns of checked and colored fabrics using optical coherence tomography. IEEE Photonics J 9:30–39

    Google Scholar 

  • Moezzi M, Ghane M, Shahsavari F (2016) The effect of mass irregularities of weft yarns on fabric surface protrusion. J Text Inst 107:645–650

    Article  Google Scholar 

  • Moezzi M, Haji-Badali A, Barez F (2021) Analysis of the wrinkle geometry of the woven fabrics during uniaxial bias extension test using Ricker wavelet algorithm. Compos Part A Appl Sci Manuf 141:106230

  • Neumann F, Holtermann T, Schneider D, Kulczycki A, Gries T, Aach T (2011) In-process fault detection for textile fabric production: Onloom imaging. Proc SPIE 8082:808240. https://doi.org/10.1117/12.889345

    Article  Google Scholar 

  • Ngan HY, Pang GK, Yung NH (2011) Automated fabric defect detection—A review. Image Vis Comput 29:442–458

    Article  Google Scholar 

  • Noboru O, Robertson AR (2005) 3.9: Standard and Supplementary Illuminants, Colorimetry. Wiley Hoboken, NJ, USA. https://doi.org/10.1002/0470094745.ch3

  • Ohtsu N (1979) A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern 9:62–66

    Article  Google Scholar 

  • Ojala T, Pietikäinen M, Maenpaa T (2002) Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans Pattern Anal Mach Intell 24:971–987. https://doi.org/10.1109/TPAMI.2002.1017623

    Article  MATH  Google Scholar 

  • Ouyang W, Wang R, Xu B (2013) Fabric pilling measurement using three-dimensional image. J Electron Imaging 22:043031

  • Pan R, Gao W, Liu J (2009) Color clustering analysis of Yarn-dyed fabric in HSL color space. Softw Eng World Congress on 2:273–278. https://doi.org/10.1109/WCSE.2009.148

    Article  Google Scholar 

  • Pan R, Gao W, Liu J, Wang H (2010a) Automatic detection of the layout of color yarns for yarn-dyed fabric via a FCM algorithm. Text Res J 80:1222–1231

    Article  Google Scholar 

  • Pan R, Gao W, Liu J, Wang H (2010b) Automatic inspection of woven fabric density of solid colour fabric density by the Hough transform. Fibres Text Eastern Europe 18:81–90

    Google Scholar 

  • Pan R, Gao W, Liu J, Wang H (2010c) Automatic recognition of woven fabric patterns based on pattern database. Fibers Polym 11:303–308

    Article  Google Scholar 

  • Pan R, Gao W, Liu J, Wang H, Zhang X (2010d) Automatic detection of structure parameters of yarn-dyed fabric. Text Res J 80:1819–1832

    Article  Google Scholar 

  • Pan R, Gao W, Liu J, Wang H (2011a) Automatic recognition of woven fabric pattern based on image processing and BP neural network. J Text Inst Proc Abstr 102:19–30

    Article  Google Scholar 

  • Pan R, Gao W, Liu J, Wang H, Qian X (2011b) Automatic inspection of double-system-mélange yarn-dyed fabric density with color-gradient image. Fibers Polym 12:127–131

    Article  Google Scholar 

  • Pan R, Liu J, Gao W (2013) Measuring linear density of threads in single-system-mélange color fabrics with FCM algorithm. Color Res Appl 38:1–7

    Google Scholar 

  • Pan R, Gao W, Li Z, Gou J, Zhu D (2015) Measuring thread densities of woven fabric using the Fourier transform. Fibres Textiles Eastern Europe 23:35–40

    Google Scholar 

  • Pan R, Zhang J, Li Z, Gao W, Xu B, Li W (2016) Applying image analysis for automatic density measurement of high-tightness woven fabrics. Fibres Text Eastern Europe 87(3):329–339

    Google Scholar 

  • Patil M, Verma S, Wakode J (2017) A review on fabric defect detection techniques. Int Res J Eng Technol 4:131–136

    Google Scholar 

  • Perwaß C, Wietzke L (2012) Single lens 3D-camera with extended depth-of-field. Proc SPIE Int Soc Opt Eng 8291:4

    Google Scholar 

  • Qin Y, Xu F (2012) Analysis and research of the fabric density based on the wavelet transform. In: 2012 Fifth international symposium on computational intelligence and design, 2012. IEEE, pp 197–200

  • Qiu HD, Lu CH, Chen W, Li JM (2011) Investigation of laser current influence on two-dimensional bar code contrast. Adv Mater Res 314–316:197–204

    Article  Google Scholar 

  • Radon J, Parks P, Clark C (2018) On the determination of functions from their integral values along certain manifolds. IEEE Trans Med Imaging 5(4):170–176

    Article  Google Scholar 

  • Ronneberger O, Fischer P, Brox T (2015) U-Net: Convolutional Networks for Biomedical Image Segmentation[DB/OL] (2015) In: International Conference on Medical image computing and computer-assisted intervention. Springer, Cham, 2015: 234–241

  • Sabuncu M, Ãzdemir H (2015) Recognition of fabric weave patterns using optical coherence tomography. J Text Inst Proc Abstr 107:1406–1411

    Article  Google Scholar 

  • Satish A, Sobana Rani S, B S (2017) Fabric Texture Analysis and Weave Pattern Recognition by Intelligent Processing 10(1–13): 121–127

  • Schneider D, Aach T (2012) Vision-based in-line fabric defect detection using yarn-specific shape features. Proc SPIE Int Soc Opt Eng 8300:13. https://doi.org/10.1117/12.907268

    Article  Google Scholar 

  • Schneider D, Merhof D (2015) Blind weave detection for woven fabrics. Pattern Anal Appl 18:725–737

    Article  MathSciNet  Google Scholar 

  • Schneider D, Holtermann T, Merhof D (2014) A traverse inspection system for high precision visual on-loom fabric defect detection. Mach vis Appl 25:1585–1599

    Article  Google Scholar 

  • Schneider D, Gloy YS, Merhof D (2015) Vision-based on-loom measurement of yarn densities in woven fabrics. IEEE Trans Instrum Meas 64:1063–1074

    Article  Google Scholar 

  • Schneider D Tracking yarns in high resolution fabric images: A real-time approach for online fabric flaw detection. In: IS&T/SPIE Electronic Imaging, 2013a. pp 810–818

  • Schneider D (2013b) Tracking yarns in high resolution fabric images: A real-time approach for online fabric flaw detection. In: Real-Time Image and Video Processing 2013b. International Society for Optics and Photonics 8656: 865603. https://doi.org/10.1117/12.2001114

  • Schröder K, Zinke A, Klein R (2014) Image-based reverse engineering and visual prototyping of woven cloth. IEEE Trans Visual Comput Graph 21:188–200

    Article  Google Scholar 

  • Shady E, Qashqary K, Hassan M, Militky J (2012) Image processing based method evaluating fabric structure characteristics. Fibres Text Eastern Europe 95:86–90

    Google Scholar 

  • Sharma G, Wu W, Dalal EN (2005) The CIEDE2000 color-difference formula: Implementation notes, supplementary test data, and mathematical observations. Color Res Appl 30:21–30

    Article  Google Scholar 

  • Sharma G, Bala R (2002) Digital color imaging handbook. CRC press, pp 226–224

  • Shen J, Geng Z, Zou X, Pan Y (2007) Detection Method for Fabric Weave Patterns and Structural Parameters Based on Wavelet Transform 28:357–362

    Google Scholar 

  • Shinohara T, Takayama J-y, Ohyama S, Kobayashi A (2003) Analysis of textile fabric structure with the CT images. In: SICE 2003 Annual Conference (IEEE Cat. No. 03TH8734), 2003. IEEE, pp 428–432

  • Shoufeng J (2011) Detection method of fabric weft skew with machine vision. J Tianjin Polytechn Univ 30:40–43

    Google Scholar 

  • Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556

  • Song L, Zhang C, Xiong H, Wei Y, Chen H (2010) A fast three-dimensional reconstruction method applied for the fabric defect detection. In: Optical metrology and inspection for industrial applications, vol 7855, pp 785515

  • Specht DF (1990) Probabilistic neural networks. Neural Netw 3:109–118. https://doi.org/10.1016/0893-6080(90)90049-Q

    Article  Google Scholar 

  • Stuyck T (2018) Cloth simulation for computer graphics. Synth Lect Vis Comput Comput Graph Anim Comput Photogr Imaging 10:1–121

    Google Scholar 

  • Su TL, Kung FC, Kuo YL (2018) Application of back-propagation neural network fuzzy clustering in textile texture automatic recognition system. In: 2008 International Conference on Wavelet Analysis and Pattern Recognition, 2008. IEEE, pp 46–49

  • Szegedy C (2015) Going deeper with convolutions. Proc IEEE Conf Comput vis Pattern Recognit 2015:1–9

    Google Scholar 

  • Technikova L, Tunak M (2013) Weaving density evaluation with the aid of image analysis. Fibres Text Eastern Europe 21:74–79

    Google Scholar 

  • Textiles–Woven fabrics–Construction–Methods of analysis–Part 2: Determination of number of threads per unit length (1999). Switzerland: International Organization for Standardization(ISO), ISO 7211–2

  • Thrane L, Yura HT, Andersen PE (2000) Analysis of optical coherence tomography systems based on the extended Huygens-Fresnel principle. JOSA A 17:484–490

    Article  Google Scholar 

  • Tu X, Ping Z, Xin B, Wang S (2011) A novel method of intelligent analysis of weave pattern based on image processing technology. Image Signal Process Int Congress 1:38–41

    Google Scholar 

  • Wang X, Li X (2012) Recognition of fabric density with quadratic local extremum. Int J Cloth Sci Technol 24:328–338

    Article  Google Scholar 

  • Wang X, Georganas ND, Petriu EM (2010b) Fabric Texture Analysis Using Computer Vision Techniques. IEEE Trans Instrum Meas 60:44–56

    Article  Google Scholar 

  • Wang X, Georganas ND, Petriu EM (2010a) Automatic woven fabric structure identification by using principal component analysis and fuzzy clustering. In: 2010a IEEE Instrumentation & Measurement Technology Conference Proceedings, 2010a. IEEE, pp 590–595

  • Wang J, Zhang J, Wang L, Pan R, Gao W (2020a) A computer vision-based system for automatic detection of misarranged color warp yarns in yarn-dyed fabric. Part III: yarn layout proofing. J TextInst, pp 1–9

  • Wang Y, Deng N, Xin B (2020b) Investigation of 3D surface profile reconstruction technology for automatic evaluation of fabric smoothness appearance. Measurement 166:108264

  • Weninger L, Kopaczka M, Merhof D (2018a) Defect detection in plain weave fabrics by yarn tracking and fully convolutional networks. In: IEEE international instrumentation and measurement technology conference (I2MTC) IEEE, 2018: 1–6. https://doi.org/10.1109/I2MTC.2018.8409546

  • Wood EJ (1990) Applying Fourier and associated transforms to pattern characterization in textiles. Text Res J 60:212–220

    Article  Google Scholar 

  • Wu H, Zhang M, Pan Z, Yin H (2005) Automatic identifying weave patterns for double-layer weft woven fabric. Int Conf Comput Graph 2005:117–122

    Google Scholar 

  • Wu J, Zhong P, Ling J, Li Z, Zhai T (2019) Design method of fabric density sensor based on the virtual grating with gradual constant. IEEE Access 7:160345–160362

    Article  Google Scholar 

  • Xiang J, Zhang N, Pan R, Gao W (2019a) Fabric image retrieval system using hierarchical search based on deep convolutional neural network. IEEE Access 7:35405–35417

    Article  Google Scholar 

  • Xiang Z, Chen K, Qian M, Hu X (2019b) Yarn-dyed woven fabric density measurement method and system based on multi-directional illumination image fusion enhancement technology. J Text Inst 111(10):1489–1501

    Article  Google Scholar 

  • Xiang Z, Zhang J, Hu X (2018) Vision-based portable yarn density measure method and system for basic single color woven fabrics. J Text Inst 1–11

  • Xiao Z, Nie X, Zhang F, Lei G (2014) Recognition for woven fabric pattern based on gradient histogram. J Text Inst 105(7):744–752. https://doi.org/10.1080/00405000.2013.847542

    Article  Google Scholar 

  • Xiao Z, Nie X, Zhang F, Geng L, Wu J, Li Y (2015) Automatic recognition for striped woven fabric pattern. J Text Inst Proc Abstr 106:409–416

    Article  Google Scholar 

  • Xiao Z, Guo Y, Geng L, Wu J, Zhang F, Wang W, Liu Y (2018a) Automatic recognition of woven fabric pattern based on TILT. Math Probl Eng 2018:1–12

    Google Scholar 

  • Xiao Z, Liu X, Wu J, Geng L, Sun Y, Zhang F, Tong J (2018b) Knitted fabric structure recognition based on deep learning. J Text Inst 109:1217–1223

    Article  Google Scholar 

  • Xin B, Hu J, Baciu G, Yu X (2009) Investigation on the classification of weave pattern based on an active grid model. Text Res J 79:1123–1134

    Article  Google Scholar 

  • Xin B, Zhang J, Zhang R, Wu X (2017) Color texture classification of yarn-dyed woven fabric based on dual-side scanning and co-occurrence matrix. Text Res J 87:1883–1895

    Article  Google Scholar 

  • Yıldırım B (2013) Determination of optimum filter size for detecting yarn boundaries. Fibers Polym 14(10):1739–1747

    Article  Google Scholar 

  • Zahid N, Abouelala O, Limouri M, Essaid A (1999) Unsupervised fuzzy clustering. Pattern Recogn Lett 20:123–129. https://doi.org/10.1016/S0167-8655(98)00142-1

    Article  MATH  Google Scholar 

  • Zhang TY, Suen CY (1984) A fast parallel algorithm for thinning digital patterns. Acm Commun 27:236–239

    Article  Google Scholar 

  • Zhang R, Xin B (2016b) A review of woven fabric pattern recognition based on image processing technology. Res J Text Appar 2:120–134

    Google Scholar 

  • Zhang R, Chen H, Zhang X, Pan R, Liu J (2010) Unsupervised color classification for yarn-dyed fabric based on FCM algorithm. Int Conf Artif Intell Comput Intell 1:497–501

    Google Scholar 

  • Zhang J, Xin B, Wu X (2013) A review of fabric identification based on image analysis technology. Text Light Ind Sci Technol 2(3):120–130

    Google Scholar 

  • Zhang J, Pan R, Gao W (2015a) Automatic inspection of density in yarn-dyed fabrics by utilizing fabric light transmittance and Fourier analysis. Appl Opt 54:966–972

    Article  Google Scholar 

  • Zhang J, Pan R, Gao W, Zhu D (2015b) Automatic detection of layout of color yarns of yarn-dyed fabric. Part 1: Single-system-mélange color fabrics. Color Res Appl 40:626–636

    Article  Google Scholar 

  • Zhang J, Pan R, Gao W, Zhu D (2015c) Automatic recognition of the color effect of yarn-dyed fabric by the smallest repeat unit recognition algorithm. Text Res J 85:432–446

    Article  Google Scholar 

  • Zhang X, Li P, Jin F (2015d) Density detection for knitted fabric based on image space domain method.In: The 27th Chinese Control and Decision Conference (2015 CCDC). IEEE 2015:5657–5662. https://doi.org/10.1109/CCDC.2015.7161810

    Article  Google Scholar 

  • Zhang J, Pan R, Gao W, Xiang J (2016a) Weave pattern recognition by measuring fiber orientation with Fourier transform. J Text Inst Proc Abstr 108:622–630

    Article  Google Scholar 

  • Zhang J, Pan R, Gao W, Xu B, Li W (2016b) Automatic detection of layout of color yarns of yarn-dyed fabric. Part 2: Region segmentation of double-system-Mélange color fabric. Color Res Appl 41:626–635

    Article  Google Scholar 

  • Zhang J, Pan R, Wang J, Gao W, Han Y (2016c) An efficient method for density measurement for high-tightness woven fabrics. Text Res J 87(3):329–339

    Article  Google Scholar 

  • Zhang J, Pan R, Gao W (2017a) A backlighting method for accurate inspection of woven fabric density. Ind Textila 68:31–36

    Article  Google Scholar 

  • Zhang J, Pan R, Gao W, Xu B, Li W (2017b) Automatic detection of layout of color yarns of yarn-dyed fabric. Part 3: Double-system-Mélange color fabrics. Color Res Appl 42:250–260

    Article  Google Scholar 

  • Zhang R, Xin B (2016a) An investigation of density measurement method for yarn-dyed woven fabrics based on dual-side fusion technique. Meas Sci Technol 27:085403

  • Zhang J, Wang J, Pan R, Zhou J, Gao W (2017c) A computer vision-based system for automatic detection of misarranged warp yarns in yarn-dyed fabric. Part I: continuous segmentation of warp yarns. J Text Inst 109(5): 577–584

  • Zhang J, Wang J, Pan R (2019) A computer vision-based system for automatic detection of misarranged warp yarns in yarn-dyed fabric. Part II: warp region segmentation. J Text Inst 111(11): 1614–1622

  • Zhao S, Jakob W, Marschner S, Bala K (2014) Building volumetric appearance models of fabric using micro CT imaging. Commun ACM 57:98–105. https://doi.org/10.1145/2670517

    Article  Google Scholar 

  • Zheng D (2014) A new method for the detection and classification of weave pattern repeat. Text Res J 84:1586–1599. https://doi.org/10.1177/0040517513517965

    Article  Google Scholar 

  • Zheng D (2015) A new method for automatic separation of fabric color. Text Res J 85:1520–1538

    Article  Google Scholar 

  • Zheng D, Han Y, Hu JL (2014) A new method for classification of woven structure for yarn-dyed fabric. Text Res J 84:78–95

    Article  Google Scholar 

  • Zheng D, Wang P, Zhou J, Ho KC (2019) Color pattern recognition for yarn-dyed fabrics. Color Res Appl 44:88–97

    Article  Google Scholar 

  • Zheng D, Wang L (2016) Multi-scale density detection for yarn-dyed fabrics with deformed repeat patterns. Textile Res J

  • Zhong P, Shi Y, Chen X (2013a) Research on digital intelligent recognition method of the weave pattern of fabric based on the redundant information. Fibers Polym 14:1919–1926

    Article  Google Scholar 

  • Zhong P, Ye T, Shi Y, Tu X (2013b) Research on computer-aided analysis and reverse reconstruction for the weave pattern of fabric. Text Res J 83:298–310

    Article  Google Scholar 

  • Zhong Q, Zhang J, Xu Y, Li M, Shen B, Tao W, Li Q (2021) Filamentous target segmentation of weft micro-CT image based on U-Net. Micron 146:102923

  • Zhou D, Zhou L, Sun J (2013) A novel feedback error-correcting algorithm for automatic recognition of the color and weave pattern of yarn-dyed fabrics. Text Res J 83:1673–1689

    Article  Google Scholar 

  • Zhou D, Zhou L, Sheng X, Sun J (2014) A Novel Weave/Color Repeat Extraction Method with Error Tolerance. J Eng Fibers Fabr 9:127–139. https://doi.org/10.1177/155892501400900216

    Article  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China [61976105]; and the Postgraduate Research & Practice Innovation Program of Jiangsu Province [KYCX20_1942].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruru Pan.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Consent to participate

The authors has consented to participate.

Consent for publication

The authors has consented to publish.

Ethical approval

For this type of study formal consent is not required.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, S., Pan, R., Gao, W. et al. Automatic recognition of woven fabric structural parameters: a review. Artif Intell Rev 55, 6345–6387 (2022). https://doi.org/10.1007/s10462-022-10156-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10462-022-10156-x

Keywords

Navigation