Skip to main content
Log in

A velocity-guided Harris hawks optimizer for function optimization and fault diagnosis of wind turbine

  • Published:
Artificial Intelligence Review Aims and scope Submit manuscript

Abstract

Harris hawks optimizer (HHO) is a relatively novel meta-heuristic approach that mimics the behavior of Harris hawk over the process of predating the rabbits. The simplicity and easy implementation of HHO have attracted extensive attention of many researchers. However, owing to its capability to balance between exploration and exploitation is weak, HHO suffers from low precision and premature convergence. To tackle these disadvantages, an improved HHO called VGHHO is proposed by embedding three modifications. Firstly, a novel modified position search equation in exploitation phase is designed by introducing velocity operator and inertia weight to guide the search process. Then, a nonlinear escaping energy parameter E based on cosine function is presented to achieve a good transition from exploration phase to exploitation phase. Thereafter, a refraction-opposition-based learning mechanism is introduced to generate the promising solutions and helps the swarm to flee from the local optimal solution. The performance of VGHHO is evaluated on 18 classic benchmarks, 30 latest benchmark tests from CEC2017, 21 benchmark feature selection problems, fault diagnosis problem of wind turbine and PV model parameter estimation problem, respectively. The simulation results indicate that VHHO has higher solution quality and faster convergence speed than basic HHO and some well-known algorithms in the literature on most of the benchmark and real-world problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Abdel-Basset M, Ding W, El-Shahat D (2021) A hybrid Harris hawks optimization algorithm with simulated annealing for feature selection. Artif Intell Rev 54:593–637

    Article  Google Scholar 

  • Alabool HM, Alarabiat D, Abualigah L, Heidari AA (2021) Harris hawks optimization: a comprehensive review of recent variants and applications. Neural Comput Appl 33:8939–8980

    Article  Google Scholar 

  • Al-Betar MA, Awadallah MA, Heidari AA, Chen H, Al-khraisat H, Li C (2021) Survival exploration strategies for Harris hawks optimizer. Expert Syst Appl 168:114243

    Article  Google Scholar 

  • Alsattar HA, Zaidan AA, Zaidan BB (2020) Novel meta-heuristic bald eagle search optimization algorithm. Artif Intell Rev 53:2237–2264

    Article  Google Scholar 

  • Arini FY, Chiewchanwattana S, Soomlek C, Sunat K (2022) Joint Opposite Selection (JOS): A premiere joint of selective leading opposition and dynamic opposite enhanced Harris’ hawks optimization for solving single-objective problems. Expert Syst Appl 188:116001. https://doi.org/10.1016/j.eswa.2021.116001

  • Arora S, Singh S (2019) Butterfly optimization algorithm: a novel approach for global optimization. Soft Comput 23:715–734

    Article  Google Scholar 

  • Awad NH, Ali MZ, Liang JJ, Qu B, Suganthan PN (2016) Problem definitions and evaluation criteria for the CEC 2017 Special Session and competition on objective bound constrained real-parameter numerical optimization, Technical Report, Nanyang Technological University Singapore

  • Balaha HM, El-Gendy EM, Saafan MM (2021) CovH2SD: a COVID-19 detection approach based on Harris hawks optimization and stacked deep learning. Expert Syst Appl 186:115805

    Article  Google Scholar 

  • Bandyopadhyay R, Basu A, Cuevas E, Sarkar R (2021a) Harris hawks optimization with simulated annealing as a deep feature selection method for screening of COVID-19 CT-scans. Appl Soft Comput 111:107698

    Article  Google Scholar 

  • Bandyopadhyay R, Kundu R, Oliva D, Sarkar R (2021b) Segmentation of brain MRI using an altruistic Harris hawks optimization algorithm. Knowl Based Syst 232:107468

    Article  Google Scholar 

  • Chatterjee I (2021) Artificial intelligence and patentability: review and discussions. Int J Modern Res 1:15–21

    Google Scholar 

  • Chawla M, Duhan M (2018) Lévy flights in metaheuristics optimization algorithms—a review. Appl Artif Intell 32:802–821

    Article  Google Scholar 

  • Chen X, Yu K, Du W, Zhao W, Liu G (2016) Parameters identification of solar cell models using generalized oppositional teaching learning based optimization. Energy 99:170–180. https://doi.org/10.1016/j.energy.2016.01.052

  • Chen H, Herdari AA, Chen H, Wang M, Pan Z, Gandomi AH (2020) Multi-population differential evolution-assisted Harris hawks optimization: framework and case studies. Future Gene Comput Syst 111:175–198

    Article  Google Scholar 

  • Cho S, Gao Z, Moan T (2018) Model-based fault detection, fault isolation and fault-tolerant control of a blade pitch system in floating wind turbines. Renew Energy 120:306–321

    Article  Google Scholar 

  • Civicioglu P (2013) Backtracking Search Optimization Algorithm for numerical optimization problems. Appl Math Comput 219(15): 8121–8144. https://doi.org/10.1016/j.amc.2013.02.017

  • Dehghani M, Montazeri Z, Malik OP, Dhiman G, Chahar V (2019) BOSA: binary orientation search algorithm. Int J Innov Technol Explor Eng 9:5306–5310

    Article  Google Scholar 

  • Dehghani M, Montazeri Z, Dhiman G, Malik OP (2020a) A spring search algorithm applied to engineering optimization. Appl Sci 10:6173

    Article  Google Scholar 

  • Dehghani M, Montazeri Z, Givi H, Guerrero JM (2020b) Darts game optimizer: a new optimization technique based on darts game. Int J Intell Eng Syst 13:286–294

    Google Scholar 

  • Dhiman G (2021) ESA: a hybrid bio-inspired metaheuristic optimization approach for engineering problems. Eng Comput 37:323–353

    Article  Google Scholar 

  • Dhiman G, Kumar V (2017) Spotted hyena optimizer: a novel bio-inspired based metaheuristic technique for engineering applications. Adv Eng Softw 114:48–70

    Article  Google Scholar 

  • Dhiman G, Kumar V (2018) Emperor penguin optimizer: a bio-inspired algorithm for engineering problems. Knowl Based Syst 159:20–50

    Article  Google Scholar 

  • Dhiman G, Kumar V (2019a) Seagull optimization algorithm: theory and its applications for large-scale industrial engineering problems. Knowl Based Syst 165:169–196

    Article  Google Scholar 

  • Dhiman G, Kumar V (2019b) STOA: a bio-inspired based optimization algorithm for industrial engineering problems. Eng Appl Artif Intell 82:148–174

    Article  Google Scholar 

  • Dhiman G, Garg M, Nagar A, Kumar V, Dehghani M (2021a) A novel algorithm for global optimization: Rat swarm optimizer. J Ambient Intell Human Comput 12:8457–8482

    Article  Google Scholar 

  • Dhiman G, Oliva D, Kaur A, Singh KK, Vimal S, Sharma A, Cengiz K (2021b) BEPO: a novel binary emperor penguin optimizer for automatic feature selection. Knowl Based Syst 211:106560

    Article  Google Scholar 

  • Ding WP, Abdel-Basset M, Eldrandaly KA, Abdel-Fatah L, De Albuquerque VHC (2021) Smart supervision of cardiomyopathy based on fuzzy Harris hawks optimizer and wearable sensing data optimization: a new model. IEEE Trans Cybern 51:4944–4958

    Article  Google Scholar 

  • Du P, Wang J, Hao Y, Niu T, Yang W (2020) A novel hybrid model based on multi-objective Harris hawks optimization algorithm for daily PM2.5 and PM10 forecasting. Appl Soft Comput 96:106620

    Article  Google Scholar 

  • Easwarakhanthan T, Bottin J, Bouhouch I, Boutrit C (1986) Nonlinear minimization algorithm for determining the solar cell parameters with microcomputers. Int J Sol Energy 4:1–12

    Article  Google Scholar 

  • Elaziz MA, Heidari AA, Fujita H, Moayedi H (2020) A competitive chain-based Harris hawks optimizer for global optimization and multi-level image thresholding problems. Appl Soft Comput 96:106347

    Article  Google Scholar 

  • Elaziz MA, Yousri D, Mirjalili S (2021) A hybrid Harris hawks-moth-flame optimization algorithm including fractional-order chaos maps and evolutionary population dynamic. Adv Eng Softw 154:102973

    Article  Google Scholar 

  • Essa FA, Elaziz MA, Elsheikh AH (2020) An enhanced productivity prediction model of active solar still using artificial neural network and Harris hawks optimizer. Appl Ther Eng 170:115020

    Article  Google Scholar 

  • Ewees AA, Elaziz MA (2020) Performance analysis of chaotic multi-verse Harris hawks optimization: a case study on solving engineering problems. Eng Appl Artif Intell 88:103370

    Article  Google Scholar 

  • Fan Q, Chen Z, Xia Z (2020) A novel quasi-reflected Harris hawks optimization algorithm for global optimization problems. Soft Comput 24:14825–14843

    Article  Google Scholar 

  • Faramarzi A, Heidarinejad M, Mirjalili S, Gandomi AH (2020) Marine predators algorithm: a nature-inspired metaheuristic. Expert Syst Appl 152:113377

    Article  Google Scholar 

  • Gandomi AH, Yang X-S, Alavi AH (2013) Cuckoo search algorithm: a metaheuristic approach to solve structural optimization problems. Eng Comput 29:17–35

    Article  Google Scholar 

  • Gong W, Cai Z, Ling CX (2010) DE/BBO: a hybrid differential evolution with biogeography-based optimization for global numerical optimization. Soft Comput 15(4):645–665. https://doi.org/10.1007/s00500-010-0591-1

    Article  Google Scholar 

  • Griffiths DJ (1998) Introduction to electrodynamics. Prentice Hall of India, New Delhi

    Google Scholar 

  • Gupta S, Deep K, Engelbrecht AP (2020a) A memory guided sine cosine algorithm for global optimization. Eng Appl Artif Intell 93:103718

    Article  Google Scholar 

  • Gupta S, Deep K, Heidari AA, Moayedi H, Wang M (2020b) Opposition-based learning Harris hawks optimization with advanced transition rules: principles and analysis. Expert Syst Appl 158:113510

    Article  Google Scholar 

  • Gupta S, Deep K, Mirjalili S, Kim JH (2020c) A modified sine cosine algorithm with novel transition parameter and mutation operator for global optimization. Expert Syst Appl 154:113395

    Article  Google Scholar 

  • Hashim FA, Houssein EH, Mabrouk MS, Al-Atabany W, Mirjalili S (2019) Henry gas solubility optimization: a novel physics-based algorithm. Future Gene Comput Syst 101:646–667

    Article  Google Scholar 

  • Hashim FA, Hussain K, Houssein EH, Mabrouk MS, Al-Atabany W (2021) Archimedes optimization algorithm: a new metaheuristic algorithm for solving optimization problems. Appl Intell 51:1531–1551

    Article  MATH  Google Scholar 

  • Hashim FA, Houssein EH, Hussain K, Mabrouk MS, Al-Atabany W (2022) Honey badger algorithm: new metaheuristic algorithm for solving optimization problems. Math Comput Simul 192:84–110

    Article  MathSciNet  MATH  Google Scholar 

  • Hassan MH, Houssein EH, Mahdy MA, Kamel S (2021) An improved manta ray foraging optimizer for cost-effective emission dispatch problems. Eng Appl Artif Intell 100(2021):104155

    Article  Google Scholar 

  • Heidari AA, Mirjalili S, Faris H, Aljarah I, Mafarja M, Chen H (2019) Harris hawks optimization: algorithm and applications. Future Gener Comput Syst 97:849–872

    Article  Google Scholar 

  • Houssein EH, Hosney ME, Oliva D, Mohamed WM, Hassaballah M (2020a) A novel hybrid Harris hawks optimization and support vector machines for drug design and discovery. Comput Chem Eng 133:106656

    Article  Google Scholar 

  • Houssein EH, Saad MR, Hashim FA, Shaban H, Hassaballah M (2020b) Lévy flight distribution: a new metaheuristic algorithm for solving engineering optimization. Eng Appl Artif Intell 94:103731

    Article  Google Scholar 

  • Houssein EH, Gad AG, Wazery YM, Suganthan PN (2021a) Task scheduling in cloud computing based on meta-heuristic: review, taxonomy, open challenges, and future trends. Swarm Evol Comput 62:100841

    Article  Google Scholar 

  • Houssein EH, Mahdy MA, Blondin MJ, Shebl D, Mohamed WM (2021b) Hybrid slime mould algorithm with adaptive guided differential evolution algorithm for combinatorial and global optimization problems. Expert Syst Appl 174:114689

    Article  Google Scholar 

  • Houssein EH, Mahdy MA, Eldin MG, Shebl D, Mohamed WM, Abdel-Aty M (2021c) Optimizing quantum cloning circuit parameters based on adaptive guided differential evolution algorithm. J Adv Res 29:147–157

    Article  Google Scholar 

  • Houssein EH, Neggaz N, Hosney ME, Mohamed WM, Hassaballah M (2021d) Enhanced Harris hawks optimization with genetic operators for selection chemical descriptors and compounds activities. Neural Comput Appl 33:13601–13618

    Article  Google Scholar 

  • Hussain K, Neggaz N, Zhu W, Houssein EH (2021) An efficient hybrid sine-cosine Harris hawks optimization for low and high-dimensional feature selection. Expert Syst Appl 176:114778

    Article  Google Scholar 

  • Issa M, Samn A (2022) Passive vehicle suspension system optimization using Harris hawk optimization algorithm. Math Comput Simul 191:328–345

    Article  MathSciNet  MATH  Google Scholar 

  • Jiao S, Chong G, Huang C, Hu H, Wang M, Heidari AA, Chen H, Zhao X (2020) Orthogonally adapted Harris hawks optimization for parameter estimation of photovoltaic models. Energy 203:117804

    Article  Google Scholar 

  • Kamboj VK, Nandi A, Bhadoria A, Sehgal S (2020) An intensify Harris hawks optimizer for numerical and engineering optimization problems. Appl Soft Comput 89:106018

    Article  Google Scholar 

  • Kaur S, Awasthi LK, Sangal AL, Dhiman G (2020) Tunicate swarm algorithm: a new bio-inspired based metaheuristic paradigm for global optimization. Eng Appl Artif Intell 90:103541

    Article  Google Scholar 

  • Kaur N, Kaur L, Cheema SS (2021) An enhanced version of Harris hawks optimization by dimension learning-based hunting for breast cancer detection. Sci Rep 11:21933

    Article  Google Scholar 

  • Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of the IEEE International Conference on Neural Networks. pp 1942–1948

  • Kumar R, Dhiman G (2021) A comparative study of fuzzy optimization through fuzzy number. Int J Modern Res 1:1–14

    Google Scholar 

  • Li C, Li J, Chen H, Heidari AA, Zhao X (2021) Memetic Harris hawks optimization: developments and perspectives on project scheduling and QoS-aware web service composition. Expert Syst Appl 171:114529

    Article  Google Scholar 

  • Liang JJ, Qin AK, Suganthan PN, Baskar S (2006) Comprehensive learning particle swarm optimizer for global optimization of multimodal functions. IEEE Trans Evol Comput 10(3):281–295. https://doi.org/10.1109/TEVC.2005.857610

  • Long W, Jiao J, Liang X, Tang M (2018a) An exploration-enhanced grey wolf optimizer to solve high-dimensional numerical optimization. Eng Appl Artif Intell 68:63–80

    Article  Google Scholar 

  • Long W, Jiao J, Liang X, Tang M (2018b) Inspired grey wolf optimizer for solving large-scale function optimization problems. Appl Math Model 60:112–126

    Article  MathSciNet  MATH  Google Scholar 

  • Long W, Wu T, Liang X, Xu S (2019) Solving high-dimensional global optimization problems using an improved sine cosine algorithm. Expert Syst Appl 123:108–126

    Article  Google Scholar 

  • Long W, Cai S, Jiao J, Xu M, Wu T (2020a) A new hybrid algorithm based on grey wolf optimizer and cuckoo search for parameter extraction of solar photovoltaic models. Energy Convers Manage 203:112243

    Article  Google Scholar 

  • Long W, Wu T, Jiao J, Tang M, Xu M (2020b) Refraction-learning-based whale optimization algorithm for high-dimensional problems and parameter estimation of PV model. Eng Appl Artif Intell 89:103457

    Article  Google Scholar 

  • Long W, Jiao J, Liang X, Wu T, Xu M, Cai S (2021a) Pinhole-imaging-based learning butterfly optimization algorithm for global optimization and feature selection. Appl Soft Comput 103:107146

    Article  Google Scholar 

  • Long W, Wu T, Xu M, Tang M, Cai S (2021b) Parameters identification of photovoltaic models by using an enhanced adaptive butterfly optimization algorithm. Energy 229:120750

    Article  Google Scholar 

  • Mirjalili S (2016) SCA: A sine cosine algorithm for solving optimization problems. Knowl Based Syst 96:120–133

    Article  Google Scholar 

  • Mirjalili S, Lewis A (2016) The whale optimization algorithm. Adv Eng Softw 95:51–67

    Article  Google Scholar 

  • Moayedi H, Osouli A, Nguyen H, Rashid ASA (2021) A novel Harris hawks optimization and k-fold cross-validation predicting slope stability. Eng Comput 37:369–379

    Article  Google Scholar 

  • Mohamed AW, Mohamed AK (2019) Adaptive guided differential evolution algorithm with novel mutation for numerical optimization. Int J Mach Learn Cybern 10:253–277

    Article  Google Scholar 

  • Naik MK, Panda R, Wunnava A, Jena B, Abraham A (2021) A leader Harris hawks optimization for 2-D Masi entropy-based multilevel imaging thresholding. Multimed Tools Appl 80:35543–35583

    Article  Google Scholar 

  • Nama S, Saha AK, Ghosh S (2017) Improved backtracking search algorithm for pseudo dynamic active earth pressure on retaining wall supporting c-Ф backfill. Appl Soft Comput 52:885–897. https://doi.org/10.1016/j.asoc.2016.09.037

  • Neggaz N, Houssein EH, Hussain K (2020) An efficient henry gas solubility optimization for feature selection. Expert Syst Appl 152:113364

    Article  Google Scholar 

  • Polap D, Woźniak M (2017) Polar bear optimization algorithm: Meta-heuristic with fast population movement and dynamic birth and death mechanism. Symmetry 9:203

    Article  Google Scholar 

  • Polap D, Woźniak M (2021) Red fox optimization algorithm. Expert Syst Appl 166:114107

    Article  Google Scholar 

  • Qais MH, Hasanien HM, Alghuwainem S (2020) Parameters extraction of three-diode photovoltaic model using computation and Harris hawks optimization. Energy 195:117040

    Article  Google Scholar 

  • Qu C, He W, Peng X, Peng X (2020) Harris hawks optimization with information exchange. Appl Math Model 84:52–75

    Article  MathSciNet  MATH  Google Scholar 

  • Rahnamayan S, Tizhoosh HR, Salama MMA (2008) Opposition-based differential evolution. IEEE Trans Evol Comput 12:64–79

    Article  Google Scholar 

  • Ramalingam S, Bakaran K (2021) An efficient data prediction model using hybrid Harris hawk optimization with random forest algorithm in wireless sensor network. J Intell Fuzzy Syst 40:5171–5195

    Article  Google Scholar 

  • Ridha HM, Heidari AA, Wang M, Chen H (2020) Boosted mutation-based Harris hawks optimizer for parameters identification of single-diode solar cell models. Energy Convers Manage 209:112660

    Article  Google Scholar 

  • Rodríguez-Esparza E, Zanella-Calzada LA, Oliva D, Heidari AA, Zaldivar D, Pérez-Cisneros M, Foong LK (2020) An efficient Harris hawks-inspired image segmentation method. Expert Syst Appl 155:113428

    Article  Google Scholar 

  • Shi Y, Eberhart RC (1998) A modified particle swarm optimizer. In: Proceedings of the IEEE International Conference on Evolutionary Computation. pp 69–73

  • Singh T (2020) A chaotic sequence-guided Harris hawks optimizer for data clustering. Neural Comput Appl 32:17789–17803

    Article  MathSciNet  Google Scholar 

  • Storn R, Price K (1997) Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J Glob Optim 11:341–359

    Article  MathSciNet  MATH  Google Scholar 

  • Talatahari S, Azizi M (2021) Chaos game optimization: a novel metaheuristic algorithm. Artif Intell Rev 54:917–1004

    Article  Google Scholar 

  • Tang M, Hu J, Kuang Z, Wu H, Zhao Q, Peng S (2020a) Fault detection of the wind turbine variable pitch system based on large margin distribution machine optimized by the state transition algorithm. Math Prob Eng 2020:9718345

    Google Scholar 

  • Tang M, Zhao Q, Ding SX, Wu H, Li L, Long W, Huang B (2020b) An improved lightGBM algorithm for online fault detection of wind turbine gearboxes. Energies 13:807

    Article  Google Scholar 

  • Tubishat M, Idris N, Shuib L, Abushariah MAM, Mirjalili S (2020) Improved salp swarm algorithm based on opposition based learning and novel local search algorithm for feature selection. Expert Syst Appl 145:113122

    Article  Google Scholar 

  • Vaishnav PK, Sharma S, Sharma P (2021) Analytical review analysis for screening COVID-19. Int J Modern Res 1:22–29

    Google Scholar 

  • Wolpert DH, Macready WG (1997) No free lunch theorems for optimization. IEEE Trans Evol Comput 1:67–82

    Article  Google Scholar 

  • Wunnava A, Naik MK, Panda R, Jena B, Abraham A (2020) An adaptive Harris hawks optimization technique for two dimensional grey gradient based multilevel image thresholding. Appl Soft Comput 95:106526

    Article  Google Scholar 

  • Yousri D, Allam D, Eteiba MB (2020) Optimal photovoltaic array reconfiguration for alleviating the partial shading influence based on a modified Harris hawks optimizer. Energy Convers Manage 206:112470

    Article  Google Scholar 

  • Zervoudakis K, Tsafarakis S (2020) A mayfly optimization algorithm. Comput Ind Eng 145:106559

    Article  Google Scholar 

  • Zhang H, Xie J, Zong B (2021) Bi-objective particle swarm optimization algorithm for the search and track tasks in the distributed multiple-input and multiple-output radar. Appl Soft Comput 101:107000

    Article  Google Scholar 

Download references

Acknowledgements

This work was partly supported by the National Natural Science Foundation of China (61463009,62173050), Science and Technology Foundation of Guizhou Province, China ([2020]1Y012), Innovation Groups Project of Education Department of Guizhou Province, China (KY[2021]015), Guizhou Key Laboratory of Big Data Statistics Analysis (BDSA20200101 and BDSA20190106), Key Projects of Education Department of Hunan Province (19A254), and Natural Science Foundation of Hunan Province (2020JJ4382).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaohong Cai.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Long, W., Jiao, J., Liang, X. et al. A velocity-guided Harris hawks optimizer for function optimization and fault diagnosis of wind turbine. Artif Intell Rev 56, 2563–2605 (2023). https://doi.org/10.1007/s10462-022-10233-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10462-022-10233-1

Keywords