Skip to main content

Advertisement

Log in

Setback in ranking fuzzy numbers: a study in fuzzy risk analysis in diabetes prediction

  • Published:
Artificial Intelligence Review Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The prevalence of diabetes is terribly increasing worldwide and every 5 s a person dies from this disease. (The IDF Diabetes Atlas, Tenth Edition (https://diabetesatlas.org/) Last visit: 7.14.2022)). Hence, timely detection of diabetes is very vital to prevent or delay the complications. Many researchers have believed that to deal with the vagueness in knowledge and complexity of diabetes, fuzzy set needs to be incorporated into diabetes prediction models to provide more realistic results. In a fuzzy environment, ranking of fuzzy numbers is a crucial prerequisite to make a decision. In this paper, a new phenomenon in ranking fuzzy numbers that we call “setback” is introduced. In setback which indicates the most confusing state in fuzzy ranking, the ranking order of fuzzy numbers is completely reversed when a new ranking method is applied to the same problem. Also a fuzzy risk analysis problem in diabetes prediction is studied in which person with the highest risk of diabetes is replaced with the lowest one and vice versa. With this result in hand, we reveal that defective ranking results in a medical problem have the potential to lead to disastrous effects on human health. We expose some potential causes of “setback” and to alleviate this problem two evaluation criteria and a benchmark are suggested. These criteria help researchers avoid severe pitfalls when introducing their own ranking methods. To achieve this goal, we first address serious drawbacks of some fuzzy ranking methods which have been recently published by reputed journals. Although the aim of this paper is not to challenge the theoretical advances in ranking methods, this paper shows that this field requires deeper studies to be proper to apply in actual cases, particularly medical decision-making. Hence, if the users do not pay attention to various aspects of ranking methods, they may fall into the trap of paradoxical results. This paper is expected to be useful for the medical researchers working in this field and for the scholars thinking about realization of fuzzy sets and ranking fuzzy numbers for real world applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data availability

All data generated or analyzed during this study are included in this published article.

Notes

  1. IDF Diabetes Atlas 9th edition 2019.

  2. American Diabetes Association (http://www.diabetes.org/) (Last visit: 7.14.2022).

  3. International Diabetes Federation, 2017 (https://idf.org) (Last visit: 7.14.2022).

  4. Although linguistic variables and their corresponding TrFN in Patra and Mondal (2012) are slightly questionable, to make a meaningful comparison the same data is considered.

  5. Analytical Hierarchy Process.

References

  • Adabitabar Firozja M, Rezai Balf F, Agheli B, Chutia R (2022) Ranking of generalized fuzzy numbers based on accuracy of comparison. Iran J Fuzzy Syst 19(2):49–61

    MathSciNet  MATH  Google Scholar 

  • Baas SM, Kwakernaak H (1977) Rating and ranking of multiple-aspect alternatives using fuzzy sets. Automatica 13(1):47–58

    Article  MathSciNet  MATH  Google Scholar 

  • Bai C, Zhang R, Qian L, Wu Y (2017) Comparisons of probabilistic linguistic term sets for multi-criteria decision making. Knowl-Based Syst 119:284–291

    Article  Google Scholar 

  • Ban AI, Coroianu L (2014) Simplifying the search for effective ranking of fuzzy numbers. IEEE Trans Fuzzy Syst 23(2):327–339

    Article  Google Scholar 

  • Barakat N, Bradley AP, Barakat MNH (2010) Intelligible support vector machines for diagnosis of diabetes mellitus. IEEE Trans Inf Technol Biomed 14(4):1114–1120

    Article  Google Scholar 

  • Barazandeh Y, Ghazanfari B (2021) A novel method for ranking generalized fuzzy numbers with two different heights and its application in fuzzy risk analysis. Iran J Fuzzy Syst 18(2):81–91

    MathSciNet  MATH  Google Scholar 

  • Botsa DR, Peddi PBR, Boddu V (2021) Ranking parametric form of fuzzy numbers by defuzzification based on centroids value and ambiguity. J Intell Fuzzy Syst 41(1):1445–1459

    Article  Google Scholar 

  • Chan HK, Sun X, Chung SH (2019) When should fuzzy analytic hierarchy process be used instead of analytic hierarchy process? Decis Support Syst 125:113114

    Article  Google Scholar 

  • Chen SH (1985) Ranking fuzzy numbers with maximizing set and minimizing set. Fuzzy Sets Syst 17(2):113–129

    Article  MathSciNet  MATH  Google Scholar 

  • Cheng CH (1998) A new approach for ranking fuzzy numbers by distance method. Fuzzy Sets Syst 95(3):307–317

    Article  MathSciNet  MATH  Google Scholar 

  • Cheng R, Kang B, Zhang J (2022) A novel method to rank fuzzy numbers using the developed golden rule representative value. Appl Intell 52:1–17

    Article  Google Scholar 

  • Chi HTX, Vincent FY (2018) Ranking generalized fuzzy numbers based on centroid and rank index. Appl Soft Comput 68:283–292

    Article  Google Scholar 

  • Chu TC, Tsao CT (2002) Ranking fuzzy numbers with an area between the centroid point and original point. Comput Math Appl 43(1–2):111–117

    MathSciNet  MATH  Google Scholar 

  • Chutia R (2017) Ranking of fuzzy numbers by using value and angle in the epsilon-deviation degree method. Appl Soft Comput 60:706–721

    Article  Google Scholar 

  • Chutia R (2021a) Ranking of Z-numbers based on value and ambiguity at levels of decision making. Int J Intell Syst 36(1):313–331

    Article  Google Scholar 

  • Chutia R (2021b) A novel method of ranking intuitionistic fuzzy numbers using value and θ multiple of ambiguity at flexibility parameters. Soft Comput 25(21):13297–13314

    Article  MATH  Google Scholar 

  • Chutia R, Chutia B (2017) A new method of ranking parametric form of fuzzy numbers using value and ambiguity. Appl Soft Comput 52:1154–1168

    Article  MATH  Google Scholar 

  • Chutia R, Saikia S (2018) Ranking intuitionistic fuzzy numbers at levels of decision-making and its application. Expert Syst 35(5):e12292

    Article  Google Scholar 

  • Chutia R, Saikia S, Gogoi MK (2021) A theoretical approach to ranking of parametric fuzzy numbers using value and left–right ambiguity. Math Sci 2021:1–17

    MATH  Google Scholar 

  • Darehmiraki M (2019) A novel parametric ranking method for intuitionistic fuzzy numbers. Iran J Fuzzy Syst 16(1):129–143

    MathSciNet  MATH  Google Scholar 

  • de Hierro AFRL, Roldán C, Herrera F (2018) On a new methodology for ranking fuzzy numbers and its application to real economic data. Fuzzy Sets Syst 353:86–110

    Article  MathSciNet  MATH  Google Scholar 

  • Deepa N, Prabadevi B, Maddikunta PK, Gadekallu TR, Baker T, Khan MA, Tariq U (2021) An AI-based intelligent system for healthcare analysis using ridge-adaline stochastic gradient descent classifier. J Supercomput 77(2):1998–2017

    Article  Google Scholar 

  • Deng H (2014) Comparing and ranking fuzzy numbers using ideal solutions. Appl Math Model 38(5–6):1638–1646

    Article  MathSciNet  MATH  Google Scholar 

  • Dombi J, Jónás T (2020) Ranking trapezoidal fuzzy numbers using a parametric relation pair. Fuzzy Sets Syst 399:20–43

    Article  MathSciNet  MATH  Google Scholar 

  • Dong WM, Wong FS (1987) Fuzzy weighted averages and implementation of the extension principle. Fuzzy Sets Syst 21(2):183–199

    Article  MathSciNet  MATH  Google Scholar 

  • Dubois D (2011) The role of fuzzy sets in decision sciences: Old techniques and new directions. Fuzzy Sets Syst 184(1):3–28

    Article  MathSciNet  MATH  Google Scholar 

  • Dutta P (2021) A sophisticated ranking method of fuzzy numbers based on the concept of exponential area. New Math Nat Comput 17(02):303–318

    Article  Google Scholar 

  • El-Kholy AM, El-Shikh MY, Abd-Elhay SK (2017) Which fuzzy ranking method is best for maximizing fuzzy net present value? Arab J Sci Eng 42(9):4079–4098

    Article  MathSciNet  MATH  Google Scholar 

  • El-Sappagh S, Elmogy M, Riad AM (2015) A fuzzy-ontology-oriented case-based reasoning framework for semantic diabetes diagnosis. Artif Intell Med 65(3):179–208

    Article  Google Scholar 

  • Ezadi S, Allahviranloo T (2017) New multi-layer method for Z-number ranking using hyperbolic tangent function and convex combination. Intell Autom Soft Comput 2017:1–7

    Google Scholar 

  • Ezzati R, Allahviranloo T, Khezerloo S, Khezerloo M (2012) An approach for ranking of fuzzy numbers. Expert Syst Appl 39(1):690–695

    Article  MATH  Google Scholar 

  • Fallahzadeh H, Ostovarfar M, Lotfi MH (2019) Population attributable risk of risk factors for type 2 diabetes; Bayesian methods. Diabetes Metab Syndr 13(2):1365–1368

    Article  Google Scholar 

  • Fodor J, & Bede B (2006). Arithmetics with fuzzy numbers: a comparative overview. In Proceedings of the 4th slovakian-hungarian joint symposium on applied machine intelligence. pp. 54–68

  • Gadekallu TR, Gao XZ (2021) An efficient attribute reduction and fuzzy logic classifier for heart disease and diabetes prediction. Recent Adv Comput Sci Commun 14(1):158–165

    Article  Google Scholar 

  • Ghoushchi SJ, Khazaeili M (2019) G-Numbers: importance-necessity concept in uncertain environment. Int J Manag Fuzzy Syst 5(1):27–32

    Article  Google Scholar 

  • Giachetti RE, Young RE (1997) A parametric representation of fuzzy numbers and their arithmetic operators. Fuzzy Sets Syst 91(2):185–202

    Article  MathSciNet  MATH  Google Scholar 

  • Gonzalez A, Pons O, Vila MA (1999) Dealing with uncertainty and imprecision by means of fuzzy numbers. Int J Approx Reasoning 21(3):233–256

    Article  MathSciNet  MATH  Google Scholar 

  • Gu Q, Xuan Z (2017) A new approach for ranking fuzzy numbers based on possibility theory. J Comput Appl Math 309:674–682

    Article  MathSciNet  MATH  Google Scholar 

  • Gupta G, Kaur J, Kumar A (2016) A note on “Fully fuzzy fixed charge multi-item solid transportation problem.” Appl Soft Comput 41:418–419

    Article  Google Scholar 

  • Hadjimichael M (2009) A fuzzy expert system for aviation risk assessment. Expert Syst Appl 36(3):6512–6519

    Article  Google Scholar 

  • Hanss M (2002) The transformation method for the simulation and analysis of systems with uncertain parameters. Fuzzy Sets Syst 130(3):277–289

    Article  MathSciNet  MATH  Google Scholar 

  • Hanss M (2005) Applied fuzzy arithmetic. Springer-Verlag, Berlin Heidelberg

    MATH  Google Scholar 

  • Huang W, Zhang F, Xu S (2021) A complete ranking method for interval-valued intuitionistic fuzzy numbers and its applications to multicriteria decision making. Soft Comput 25(3):2513–2520

    Article  MATH  Google Scholar 

  • Huo L, Zhang G, Du XD, Jia Q, Qian ZK, Chen D, Zhang XY (2020) The prevalence, risk factors and clinical correlates of diabetes mellitus in Chinese patients with schizophrenia. Schizophr Res 218:262–266

    Article  Google Scholar 

  • Ismail L, Materwala H, Al Kaabi J (2021) Association of risk factors with type 2 diabetes: A systematic review. Comput Struct Biotechnol J 19:1759

    Article  Google Scholar 

  • Jaiswal V, Negi A, Pal T (2021) A review on current advances in machine learning based diabetes prediction. Prim Care Diabetes. 15:435

    Article  Google Scholar 

  • Jeevaraj S, Dhanasekaran P (2016) A linear ordering on the class of trapezoidal intuitionistic fuzzy numbers. Expert Syst Appl 60:269–279

    Article  Google Scholar 

  • Kacprzak D (2019) An extended TOPSIS method based on ordered fuzzy numbers for group decision making. Artif Intell Rev 2019:1–31

    Google Scholar 

  • Kaur A, Kumar A (2019) Commentary on “A geometric approach for ranking interval-valued intuitionistic fuzzy numbers with an application to group decision-making.” Comput Ind Eng 135:314–316

    Article  Google Scholar 

  • Kavakiotis I, Tsave O, Salifoglou A, Maglaveras N, Vlahavas I, Chouvarda I (2017) Machine learning and data mining methods in diabetes research. Comput Struct Biotechnol J 15:104–116

    Article  Google Scholar 

  • Klir GJ (1997) Fuzzy arithmetic with requisite constraints. Fuzzy Sets Syst 91(2):165–175

    Article  MathSciNet  MATH  Google Scholar 

  • Kumar A, Singh P, Kaur P, Kaur A (2011) RM approach for ranking of L-R type generalized fuzzy numbers. Soft Comput 15(7):1373–1381

    Article  MATH  Google Scholar 

  • Liou TS, Wang MJJ (1992) Ranking fuzzy numbers with integral value. Fuzzy Sets Syst 50(3):247–255

    Article  MathSciNet  MATH  Google Scholar 

  • Liu F, Huang CX, Chen YR (2021) A possibility theory-based approach to the ranking of generalized fuzzy numbers. Int J Fuzzy Syst 23:1–14

    Article  Google Scholar 

  • López R, de Hierro AF, Márquez Montávez A, Roldán C (2020) A novel fuzzy methodology applied for ranking trapezoidal fuzzy numbers and new properties. Int J Comput Math 97(1–2):358–386

    MathSciNet  MATH  Google Scholar 

  • Manna S, Basu TM, Mondal SK (2019) Generalized trapezoidal intuitionistic fuzzy soft sets in risk analysis. Int J Appl Comput Math 5(3):66

    Article  MATH  Google Scholar 

  • Marimuthu D, Mahapatra GS (2020) Multi-criteria decision-making using a complete ranking of generalized trapezoidal fuzzy numbers. Soft Comput 2020:1–13

    MATH  Google Scholar 

  • Meng F, Tang J (2019) New ranking order for linguistic hesitant fuzzy sets. J Operational Res Soc 70(4):531–540

    Article  Google Scholar 

  • Meng F, Chen X, Zhang Q (2014) Multi-attribute decision analysis under a linguistic hesitant fuzzy environment. Inf Sci 267:287–305

    Article  MathSciNet  MATH  Google Scholar 

  • Mohamad D, Shaharani SA, Kamis NH (2017) Ordering of Z-numbers. AIP conference proceedings. AIP Publishing LLC, p 040049

    Google Scholar 

  • Molinari F (2016) A new criterion of choice between generalized triangular fuzzy numbers. Fuzzy Sets Syst 296:51–69

    Article  MathSciNet  MATH  Google Scholar 

  • Nayagam VLG, Jeevaraj S, Dhanasekaran P (2017) An intuitionistic fuzzy multi-criteria decision-making method based on non-hesitance score for interval-valued intuitionistic fuzzy sets. Soft Comput 21(23):7077–7082

    Article  MATH  Google Scholar 

  • Ngai EW, Wat FKT (2005) Fuzzy decision support system for risk analysis in e-commerce development. Decis Support Syst 40(2):235–255

    Article  Google Scholar 

  • Ngan SC (2018) Revisiting fuzzy set operations: a rational approach for designing set operators for type-2 fuzzy sets and type-2 like fuzzy sets. Expert Syst Appl 107:255–284

    Article  Google Scholar 

  • Ngan SC (2021) A concrete reformulation of fuzzy arithmetic. Expert Syst Appl 167:113818

    Article  Google Scholar 

  • Patra K, Mondal SK (2012) Risk analysis in diabetes prediction based on a new approach of ranking of generalized trapezoidal fuzzy numbers. Cybern Syst 43(8):623–650

    Article  MATH  Google Scholar 

  • Patra K (2022) Fuzzy risk analysis using a new technique of ranking of generalized trapezoidal fuzzy numbers. Granul Comput 7(1):127–140

  • Piegat A, Landowski M (2012) Is the conventional interval-arithmetic correct. J Theor Appl Comput Sci 6(2):27–44

    Google Scholar 

  • Piegat A, Landowski M (2017) Is fuzzy number the right result of arithmetic operations on fuzzy numbers? Advances in fuzzy logic and technology. Springer, Cham, pp 181–194

    Google Scholar 

  • Piegat A, Pluciński M (2015) Fuzzy number addition with the application of horizontal membership functions. Sci World J 2015:1

    Article  MATH  Google Scholar 

  • Ponnialagan D, Selvaraj J, Velu LGN (2018) A complete ranking of trapezoidal fuzzy numbers and its applications to multi-criteria decision making. Neural Comput Appl 30(11):3303–3315

    Article  Google Scholar 

  • Radha R, Rajagopalan SP (2007) Fuzzy logic approach for diagnosis of diabetics. Inf Technol J 6(1):96–102

    Article  Google Scholar 

  • Ren P, Xu Z, Gou X (2016) Pythagorean fuzzy TODIM approach to multi-criteria decision making. Appl Soft Comput 42:246–259

    Article  Google Scholar 

  • Rezvani S (2015) Ranking generalized exponential trapezoidal fuzzy numbers based on variance. Appl Math Comput 262:191–198

    Article  MathSciNet  MATH  Google Scholar 

  • Rezvani S (2016) Cardinal, median value, variance and covariance of exponential fuzzy numbers with shape function and its applications in ranking fuzzy numbers. Int J Comput Intell Syst 9(1):10–24

    Article  Google Scholar 

  • Roldán López de Hierro AF, Márquez Montávez A, Roldán C (2020) A novel fuzzy methodology applied for ranking trapezoidal fuzzy numbers and new properties. Int J of Comput Math 97(1–2):358–386

  • Rouhparvar H, Panahi A (2015) A new definition for defuzzification of generalized fuzzy numbers and its application. Appl Soft Comput 30:577–584

    Article  Google Scholar 

  • Roychowdhury S, Pedrycz W (2001) A survey of defuzzification strategies. Int J Intell Syst 16(6):679–695

    Article  MATH  Google Scholar 

  • Saaty TL (2006) There is no mathematical validity for using fuzzy number crunching in the analytic hierarchy process. J Syst Sci Syst Eng 15(4):457–464

    Article  Google Scholar 

  • Saaty TL, Tran LT (2010) Fuzzy judgments and fuzzy sets. Int J Strateg Decis Sci (IJSDS) 1(1):23–40

    Article  Google Scholar 

  • Saeedi P, Petersohn I, Salpea P, Malanda B, Karuranga S, Unwin N, IDF Diabetes Atlas Committee (2019) Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: results from the international diabetes federation diabetes Atlas. Diabetes Res Clin Pract 157:107843

    Article  Google Scholar 

  • Saeedi P, Salpea P, Karuranga S, Petersohn I, Malanda B, Gregg EW, Williams R (2020) Mortality attributable to diabetes in 20–79 years old adults, 2019 estimates: results from the international diabetes federation diabetes Atlas. Diabetes Res Clin Pract 162:108086

    Article  Google Scholar 

  • Şahin R (2016) Fuzzy multicriteria decision making method based on the improved accuracy function for interval-valued intuitionistic fuzzy sets. Soft Comput 20(7):2557–2563

    Article  MATH  Google Scholar 

  • Salem H, Shams MY, Elzeki OM, Abd Elfattah M, Al-Amri FJ, Elnazer S (2022) Fine-tuning fuzzy KNN classifier based on uncertainty membership for the medical diagnosis of diabetes. Appl Sci 12(3):950

    Article  Google Scholar 

  • Schmucker KJ (1984) Fuzzy sets, nanural language computations, and risk analysis. Computer Science Press

    MATH  Google Scholar 

  • Schwarz PEH, Peltonen M (2007) Prevention of type 2 diabetes-lessons we have learnt for implementation. Horm Metab Res 39(09):636–641

    Article  Google Scholar 

  • Selvachandran G, Quek SG, Paramesran R, Ding W, Son LH (2022) Developments in the detection of diabetic retinopathy: a state-of-the-art review of computer-aided diagnosis and machine learning methods. Artif Intell Rev 2022:1–50

    Google Scholar 

  • Şen Z (2006) Discussion on “Applying fuzzy theory and genetic algorithm to interpolate precipitation” by CL Chang, SL Lo, and SL Yu. J Hydrol 331(1–2):360–363

    Article  Google Scholar 

  • Seresht NG, Fayek AR (2019) Computational method for fuzzy arithmetic operations on triangular fuzzy numbers by extension principle. Int J Approx Reasoning 106:172–193

    Article  MathSciNet  MATH  Google Scholar 

  • Sotoudeh-Anvari A (2016) Comparing trapezoidal fuzzy numbers by using a hybrid technique on the base of the ideal points and the centroid point. J Intell Fuzzy Syst 30(6):3099–3109

    Article  MATH  Google Scholar 

  • Sotoudeh-Anvari A (2020a) A necessary condition for comparing and ranking of triangular fuzzy numbers on the basis of height-independent ranking techniques. Int J Knowl-Based Intell Eng Syst 24(4):269–277

    Google Scholar 

  • Sotoudeh-Anvari A (2020b) A critical review on theoretical drawbacks and mathematical incorrect assumptions in fuzzy OR methods: review from 2010 to 2020. Appl Soft Comput 93:106354

    Article  Google Scholar 

  • Sotoudeh-Anvari A (2022) The applications of MCDM methods in COVID-19 pandemic: a state of the art review. Appl Soft Comput 2022:109238

    Article  Google Scholar 

  • Sotoudeh-Anvari A, Sadjadi SJ, Sadi-Nezhad S (2017) Theoretical drawbacks in fuzzy ranking methods and some suggestions for a meaningful comparison: an application to fuzzy risk analysis. Cybern Syst 48(8):551–575

    Article  Google Scholar 

  • Spänig S, Emberger-Klein A, Sowa JP, Canbay A, Menrad K, Heider D (2019) The virtual doctor: an interactive clinical-decision-support system based on deep learning for non-invasive prediction of diabetes. Artif Intell Med 100:101706

    Article  Google Scholar 

  • Stamatelatos M (2000) Probabilistic risk assessment: what is it and why is it worth performing it. NASA Off Safe Miss Assur 4(05):00

    Google Scholar 

  • Stefanini L (2010) A generalization of Hukuhara difference and division for interval and fuzzy arithmetic. Fuzzy Sets Syst 161(11):1564–1584

    Article  MathSciNet  MATH  Google Scholar 

  • Steimann F (1997) Fuzzy set theory in medicine. Artif Intell Med 11(1):1–7

    Google Scholar 

  • Talaei-Khoei A, Wilson JM (2018) Identifying people at risk of developing type 2 diabetes: a comparison of predictive analytics techniques and predictor variables. Int J Med Informatics 119:22–38

    Article  Google Scholar 

  • Talon A, Curt C (2017) Selection of appropriate defuzzification methods: application to the assessment of dam performance. Expert Syst Appl 70:160–174

    Article  Google Scholar 

  • Tuljak-Suban D, Bajec P (2018) The Influence of defuzzification methods to decision support systems based on fuzzy AHP with scattered comparison matrix: application to 3PLP selection as a case study. Int J Uncertain Fuzziness Knowl-Based Syst 26(03):475–491

    Article  MATH  Google Scholar 

  • Van Hop N (2022) Ranking fuzzy numbers based on relative positions and shape characteristics. Expert Syst Appl 191:116312

    Article  Google Scholar 

  • Van Leekwijck W, Kerre EE (1999) Defuzzification: criteria and classification. Fuzzy Sets Syst 108(2):159–178

    Article  MathSciNet  MATH  Google Scholar 

  • Vincent FY, Chi HTX, Shen CW (2013) Ranking fuzzy numbers based on epsilon-deviation degree. Appl Soft Comput 13(8):3621–3627

    Article  Google Scholar 

  • Vincent FY, Van LH, Dat LQ, Chi HTX, Chou SY, Duong TTT (2017) Analyzing the ranking method for fuzzy numbers in fuzzy decision making based on the magnitude concepts. Int J Fuzzy Syst 19(5):1279–1289

    Article  Google Scholar 

  • Wan S, Dong J (2014) A possibility degree method for interval-valued intuitionistic fuzzy multi-attribute group decision making. J Comput Syst Sci 80(1):237–256

    Article  MathSciNet  MATH  Google Scholar 

  • Wan SP, Jin Z, Wang F (2017) A new ranking method for Pythagorean fuzzy numbers. 2017 12th International conference on intelligent systems and knowledge engineering (ISKE). IEEE, pp 1–6

    Google Scholar 

  • Wang F (2021) Preference degree of triangular fuzzy numbers and its application to multi-attribute group decision making. Expert Syst Appl 178:114982

    Article  Google Scholar 

  • Wang X, Kerre EE (2001) Reasonable properties for the ordering of fuzzy quantities (I). Fuzzy Sets Syst 118(3):375–385

    Article  MathSciNet  MATH  Google Scholar 

  • Wang YJ, Lee HS (2008) The revised method of ranking fuzzy numbers with an area between the centroid and original points. Comput Math Appl 55(9):2033–2042

    MathSciNet  MATH  Google Scholar 

  • Wang YM, Yang JB, Xu DL, Chin KS (2006) On the centroids of fuzzy numbers. Fuzzy Sets Syst 157(7):919–926

    Article  MathSciNet  MATH  Google Scholar 

  • Xing Z, Xiong W, Liu H (2017) A Euclidean Approach for Ranking Intuitionistic Fuzzy Values. IEEE Trans on Fuzzy Syst 26(1):353–365

  • Xu ZS, Da QL (2002) The uncertain OWA operator. Int J Intell Syst 17(6):569–575

    Article  MATH  Google Scholar 

  • Yatsalo BI, Martínez L (2018) Fuzzy rank acceptability analysis: a confidence measure of ranking fuzzy numbers. IEEE Trans Fuzzy Syst 26(6):3579–3593

    Article  Google Scholar 

  • Yatsalo B, Korobov A, Radaev A, Qin J, Martinez L (2021) Ranking of independent and dependent fuzzy numbers and intransitivity in fuzzy MCDA. IEEE Trans Fuzzy Syst 30:1382

    Article  Google Scholar 

  • Yu SM, Zhou H, Chen XH, Wang JQ (2015) A multi-criteria decision-making method based on Heronian mean operators under a linguistic hesitant fuzzy environment. Asia-Pacific J Oper Res 32(05):1550035

    Article  MathSciNet  MATH  Google Scholar 

  • Yuan Y (1991) Criteria for evaluating fuzzy ranking methods. Fuzzy Sets Syst 43(2):139–157

    Article  MathSciNet  MATH  Google Scholar 

  • Yuan S, Larsson SC (2020) An atlas on risk factors for type 2 diabetes: a wide-angled Mendelian randomisation study. Diabetologia 63(11):2359–2371

    Article  Google Scholar 

  • Yue C (2016) A geometric approach for ranking interval-valued intuitionistic fuzzy numbers with an application to group decision-making. Comput Ind Eng 102:233–245

    Article  Google Scholar 

  • Zadeh LA (1975) The concept of a linguistic variable and its application to approximate reasoning—I. Inf Sci 8(3):199–249

    Article  MathSciNet  MATH  Google Scholar 

  • Zadeh LA (2011) A note on Z-numbers. Inf Sci 181(14):2923–2932

    Article  MATH  Google Scholar 

  • Zadeh LA (1965) Information and control. Fuzzy Sets 8(3):338–353

    Google Scholar 

  • Zhou H, Wang JQ, Zhang HY (2018) Multi-criteria decision-making approaches based on distance measures for linguistic hesitant fuzzy sets. J Operational Res Soc 69(5):661–675

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Editor-in-Chief, Prof. Derong Liu, and the reviewers for their valuable suggestions for improving this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alireza Sotoudeh-Anvari.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sotoudeh-Anvari, M., Sotoudeh-Anvari, A. Setback in ranking fuzzy numbers: a study in fuzzy risk analysis in diabetes prediction. Artif Intell Rev 56, 4591–4639 (2023). https://doi.org/10.1007/s10462-022-10282-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10462-022-10282-6

Keywords