Skip to main content

Advertisement

Log in

Comprehensive survey on hierarchical clustering algorithms and the recent developments

  • Published:
Artificial Intelligence Review Aims and scope Submit manuscript

Abstract

Data clustering is a commonly used data processing technique in many fields, which divides objects into different clusters in terms of some similarity measure between data points. Comparing to partitioning clustering methods which give a flat partition of the data, hierarchical clustering methods can give multiple consistent partitions of the data at different levels for the same data without rerunning clustering, it can be used to better analyze the complex structure of the data. There are usually two kinds of hierarchical clustering methods: divisive and agglomerative. For the divisive clustering, the key issue is how to select a cluster for the next splitting procedure according to dissimilarity and how to divide the selected cluster. For agglomerative hierarchical clustering, the key issue is the similarity measure that is used to select the two most similar clusters for the next merge. Although both types of the methods produce the dendrogram of the data as output, the clustering results may be very different depending on the dissimilarity or similarity measure used in the clustering, and different types of methods should be selected according to different types of the data and different application scenarios. So, we have reviewed various hierarchical clustering methods comprehensively, especially the most recently developed methods, in this work. The similarity measure plays a crucial role during hierarchical clustering process, we have reviewed different types of the similarity measure along with the hierarchical clustering. More specifically, different types of hierarchical clustering methods are comprehensively reviewed from six aspects, and their advantages and drawbacks are analyzed. The application of some methods in real life is also discussed. Furthermore, we have also included some recent works in combining deep learning techniques and hierarchical clustering, which is worth serious attention and may improve the hierarchical clustering significantly in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Abdi H, Valentin D (2007) Multiple correspondence analysis. Encycl Meas Stat 2(4):651–657

    Google Scholar 

  • Ackerman M, Dasgupta S (2014) Incremental clustering: the case for extra clusters. In: Advances in neural information processing systems 27: annual conference on neural information processing systems 2014, December 8–13 2014, Montreal, QC. pp 307–315

  • Agarwal S, Lim J, Zelnik-Manor L et al (2005) Beyond pairwise clustering. In: 2005 IEEE computer society conference on computer vision and pattern recognition (CVPR 2005), 20–26 June 2005, San Diego, CA. IEEE Computer Society, pp 838–845. https://doi.org/10.1109/CVPR.2005.89

  • Agha GA (1990) ACTORS—a model of concurrent computation in distributed systems. MIT Press series in artificial intelligence. MIT Press, Cambridge

    Google Scholar 

  • Alalyan F, Zamzami N, Bouguila N (2019) Model-based hierarchical clustering for categorical data. In: 28th IEEE international symposium on industrial electronics, ISIE 2019, Vancouver, BC, June 12–14, 2019. IEEE, pp 1424–1429. https://doi.org/10.1109/ISIE.2019.8781307

  • Altinigneli MC, Miklautz L, Böhm C et al (2020) Hierarchical quick shift guided recurrent clustering. In: 2020 IEEE 36th international conference on data engineering (ICDE). pp 1842–1845. https://doi.org/10.1109/ICDE48307.2020.00184

  • Alzate C, Suykens JA (2012) Hierarchical kernel spectral clustering. Neural Netw 35(C):21–30. https://doi.org/10.1016/j.neunet.2012.06.007

    Article  MATH  Google Scholar 

  • Anderberg MR (1973) Chapter 6–hierarchical clustering methods, probability and mathematical statistics: a series of monographs and textbooks, vol 19. Academic Press, Cambridge. https://doi.org/10.1016/B978-0-12-057650-0.50012-0

    Book  Google Scholar 

  • Averbuch-Elor H, Bar N, Cohen-Or D (2020) Border-peeling clustering. IEEE Trans Pattern Anal Mach Intell 42(7):1791–1797. https://doi.org/10.1109/TPAMI.2019.2924953

    Article  Google Scholar 

  • Barton T, Bruna T, Kordík P (2016) Mocham: robust hierarchical clustering based on multi-objective optimization. In: IEEE international conference on data mining workshops, ICDM workshops 2016, December 12–15, 2016, Barcelona. IEEE Computer Society, pp 831–838. https://doi.org/10.1109/ICDMW.2016.0123

  • Barton T, Bruna T, Kordík P (2019) Chameleon 2: an improved graph-based clustering algorithm. ACM Trans Knowl Discov Data 13(1):10. https://doi.org/10.1145/3299876

    Article  Google Scholar 

  • Batagelj V (1988) Generalized ward and related clustering problems. Classification and related methods of data analysis. Jun: 67–74

  • Berkhin P (2006) A survey of clustering data mining techniques. In: Kogan J, Nicholas CK, Teboulle M (eds) Grouping multidimensional data–recent advances in clustering. Springer, Berlin, pp 25–71. https://doi.org/10.1007/3-540-28349-8_2

    Chapter  Google Scholar 

  • Boley D (1998) Principal direction divisive partitioning. Data Min Knowl Disc 2(4):325–344

    Google Scholar 

  • Bouguettaya A, Yu Q, Liu X et al (2015) Efficient agglomerative hierarchical clustering. Expert Syst Appl 42(5):2785–2797

    Google Scholar 

  • Brans JP, Vincke P (1985) Note—a preference ranking organisation method: (the PROMETHEE method for multiple criteria decision-making). Manag Sci 31(6):647–656

    MATH  Google Scholar 

  • Brans JP, Vincke P, Mareschal B (1986) How to select and how to rank projects: the PROMETHEE method. Eur J Oper Res 24(2):228–238

    MathSciNet  MATH  Google Scholar 

  • Cai D, Chen X (2015) Large scale spectral clustering via landmark-based sparse representation. IEEE Trans Cybern 45(8):1669–1680. https://doi.org/10.1109/TCYB.2014.2358564

    Article  Google Scholar 

  • Cai Q, Liu J (2020) Hierarchical clustering of bipartite networks based on multiobjective optimization. IEEE Trans Netw Sci Eng 7(1):421–434. https://doi.org/10.1109/TNSE.2018.2830822

    Article  MathSciNet  Google Scholar 

  • Cai Y, Sun Y (2011) ESPRIT-tree: hierarchical clustering analysis of millions of 16s rRNA pyrosequences in quasilinear computational time. Nucleic Acids Res 39(14):e95–e95. https://doi.org/10.1093/nar/gkr349

    Article  Google Scholar 

  • Campello RJGB, Moulavi D, Sander J (2013) Density-based clustering based on hierarchical density estimates. In: Pei J, Tseng VS, Cao L et al (eds) Advances in knowledge discovery and data mining. Springer, Berlin, Heidelberg, pp 160–172

    Google Scholar 

  • Cao X, Su T, Wang P et al (2018) An optimized chameleon algorithm based on local features. In: Proceedings of the 10th international conference on machine learning and computing, ICMLC 2018, Macau, February 26–28, 2018. ACM, pp 184–192

  • Carpineto C, Romano G (1996) A lattice conceptual clustering system and its application to browsing retrieval. Mach Learn 24(2):95–122. https://doi.org/10.1007/BF00058654

    Article  Google Scholar 

  • Chakraborty S, Paul D, Das S (2020) Hierarchical clustering with optimal transport. Stat Probab Lett 163(108):781. https://doi.org/10.1016/j.spl.2020.108781

    Article  MathSciNet  MATH  Google Scholar 

  • Chen D, Cui DW, Wang CX et al (2006) A rough set-based hierarchical clustering algorithm for categorical data. Int J Inf Technol 12(3):149–159

    Google Scholar 

  • Chen W, Song Y, Bai H et al (2011) Parallel spectral clustering in distributed systems. IEEE Trans Pattern Anal Mach Intell 33(3):568–586. https://doi.org/10.1109/TPAMI.2010.88

    Article  Google Scholar 

  • Cheng Q, Liu Z, Huang J et al (2012) Hierarchical clustering based on hyper-edge similarity for community detection. In: 2012 IEEE/WIC/ACM international conferences on web intelligence, WI 2012, Macau, December 4–7, 2012. IEEE Computer Society, pp 238–242. https://doi.org/10.1109/WI-IAT.2012.9

  • Cheng D, Zhu Q, Huang J et al (2019a) A hierarchical clustering algorithm based on noise removal. Int J Mach Learn Cybern 10(7):1591–1602. https://doi.org/10.1007/s13042-018-0836-3

    Article  Google Scholar 

  • Cheng D, Zhu Q, Huang J et al (2019b) A local cores-based hierarchical clustering algorithm for data sets with complex structures. Neural Comput Appl 31(11):8051–8068. https://doi.org/10.1007/s00521-018-3641-8

    Article  Google Scholar 

  • Cherng J, Lo M (2001) A hypergraph based clustering algorithm for spatial data sets. In: Proceedings of the 2001 IEEE international conference on data mining, 29 November–2 December 2001, San Jose, CA. IEEE Computer Society, pp 83–90. https://doi.org/10.1109/ICDM.2001.989504

  • Cheung Y, Zhang Y (2019) Fast and accurate hierarchical clustering based on growing multilayer topology training. IEEE Trans Neural Netw Learn Syst 30(3):876–890. https://doi.org/10.1109/TNNLS.2018.2853407

    Article  Google Scholar 

  • Cho M, Lee J, Lee KM (2009) Feature correspondence and deformable object matching via agglomerative correspondence clustering. In: IEEE 12th international conference on computer vision, ICCV 2009, Kyoto, September 27–October 4, 2009. IEEE Computer Society, pp 1280–1287. https://doi.org/10.1109/ICCV.2009.5459322

  • Courty N, Flamary R, Tuia D et al (2017) Optimal transport for domain adaptation. IEEE Trans Pattern Anal Mach Intell 39(9):1853–1865. https://doi.org/10.1109/TPAMI.2016.2615921

    Article  Google Scholar 

  • Day WH, Edelsbrunner H (1984) Efficient algorithms for agglomerative hierarchical clustering methods. J Classif 1(1):7–24

    MATH  Google Scholar 

  • Dixit V (2022) GCFI++: embedding and frequent itemset based incremental hierarchical clustering with labels and outliers. In: CODS-COMAD 2022: 5th joint international conference on data science & management of data (9th ACM IKDD CODS and 27th COMAD), Bangalore, January 8–10, 2022. ACM, pp 135–143. https://doi.org/10.1145/3493700.3493727

  • Dong Y, Wang Y, Jiang K (2018) Improvement of partitioning and merging phase in chameleon clustering algorithm. In: 2018 3rd international conference on computer and communication systems (ICCCS). IEEE, pp 29–32

  • Duran BS, Odell PL (2013) Cluster analysis: a survey, vol 100. Springer Science & Business Media, Berlin

    MATH  Google Scholar 

  • D’Urso P, Vitale V (2020) A robust hierarchical clustering for georeferenced data. Spat Stat 35(100):407. https://doi.org/10.1016/j.spasta.2020.100407

    Article  MathSciNet  Google Scholar 

  • Endo Y, Haruyama H, Okubo T (2004) On some hierarchical clustering algorithms using kernel functions. In: 2004 IEEE international conference on fuzzy systems (IEEE Cat. No.04CH37542), vol 3. pp 1513–1518. https://doi.org/10.1109/FUZZY.2004.1375399

  • Estivill-Castro V, Lee I (2000) AMOEBA: hierarchical clustering based on spatial proximity using delaunay diagram. In: Proceedings of the 9th international symposium on spatial data handling. Beijing, pp 1–16

  • Everitt B, Landau S, Leese M (2001) Cluster analysis. Arnold, London

    MATH  Google Scholar 

  • Fisher DH (1987) Knowledge acquisition via incremental conceptual clustering. Mach Learn 2(2):139–172. https://doi.org/10.1007/BF00114265

    Article  Google Scholar 

  • Forgy EW (1965) Cluster analysis of multivariate data: efficiency versus interpretability of classifications. Biometrics 21:768–769

    Google Scholar 

  • Fouedjio F (2016) A hierarchical clustering method for multivariate geostatistical data. Spat Stat 18:333–351. https://doi.org/10.1016/j.spasta.2016.07.003

    Article  MathSciNet  Google Scholar 

  • Fränti P, Virmajoki O, Hautamäki V (2006) Fast agglomerative clustering using a k-nearest neighbor graph. IEEE Trans Pattern Anal Mach Intell 28(11):1875–1881. https://doi.org/10.1109/TPAMI.2006.227

    Article  Google Scholar 

  • Frigui H, Krishnapuram R (1999) A robust competitive clustering algorithm with applications in computer vision. IEEE Trans Pattern Anal Mach Intell 21(5):450–465. https://doi.org/10.1109/34.765656

    Article  Google Scholar 

  • Galdino SML, Maciel PRM (2019) Hierarchical cluster analysis of interval-valued data using width of range Euclidean distance. In: IEEE Latin American conference on computational intelligence, LA-CCI 2019, Guayaquil, Ecuador, November 11–15, 2019. IEEE, pp 1–6. https://doi.org/10.1109/LA-CCI47412.2019.9036754

  • Geng H, Ali HH (2005) A new clustering strategy with stochastic merging and removing based on kernel functions. In: Fourth international IEEE computer society computational systems bioinformatics conference workshops & poster abstracts, CSB 2005 workshops, Stanford, CA, August 8–11, 2005. IEEE Computer Society, pp 41–42. https://doi.org/10.1109/CSBW.2005.10

  • Girvan M, Newman ME (2002) Community structure in social and biological networks. Proc Natl Acad Sci USA 99(12):7821–7826

    MathSciNet  MATH  Google Scholar 

  • Golub GH, Loan CFV (1996) Matrix computations, 3rd edn. Johns Hopkins University Press, Baltimore

    MATH  Google Scholar 

  • Govindu VM (2005) A tensor decomposition for geometric grouping and segmentation. In: 2005 IEEE computer society conference on computer vision and pattern recognition (CVPR 2005), 20–26 June 2005, San Diego, CA. IEEE Computer Society, pp 1150–1157. https://doi.org/10.1109/CVPR.2005.50

  • Gracia C, Binefa X (2011) On hierarchical clustering for speech phonetic segmentation. In: Proceedings of the 19th European signal processing conference, EUSIPCO 2011, Barcelona, August 29–September 2, 2011. IEEE, pp 2128–2132

  • Guan X, Du L (1998) Domain identification by clustering sequence alignments. Bioinformatics 14(9):783–788. https://doi.org/10.1093/bioinformatics/14.9.783

    Article  MathSciNet  Google Scholar 

  • Guha S, Rastogi R, Shim K (1998) CURE: an efficient clustering algorithm for large databases. In: Haas LM, Tiwary A (eds) SIGMOD 1998, proceedings ACM SIGMOD international conference on management of data, June 2–4, 1998, Seattle, Washington. ACM Press, pp 73–84. https://doi.org/10.1145/276304.276312

  • Guha S, Rastogi R, Shim K (2000) ROCK: a robust clustering algorithm for categorical attributes. Inf Syst 25(5):345–366. https://doi.org/10.1016/S0306-4379(00)00022-3

    Article  Google Scholar 

  • Gullo F, Ponti G, Tagarelli A et al (2008) A hierarchical algorithm for clustering uncertain data via an information-theoretic approach. In: Proceedings of the 8th IEEE international conference on data mining (ICDM 2008), December 15–19, 2008, Pisa. IEEE Computer Society, pp 821–826. https://doi.org/10.1109/ICDM.2008.115

  • Guo JF, Zhao YY, Li J (2007) A multi-relational hierarchical clustering algorithm based on shared nearest neighbor similarity. In: 2007 international conference on machine learning and cybernetics. IEEE, pp 3951–3955. https://doi.org/10.1109/ICMLC.2007.4370836

  • Halkidi M, Batistakis Y, Vazirgiannis M (2001) On clustering validation techniques. J Intell Inf Syst 17(2–3):107–145. https://doi.org/10.1023/A:1012801612483

    Article  MATH  Google Scholar 

  • Han J, Kamber M, Pei J (2011) Data mining concepts and techniques: third edition. Morgan Kaufmann Ser Data Manag Syst 5(4):83–124

    Google Scholar 

  • Han X, Zhu Y, Ting KM et al (2022) Streaming hierarchical clustering based on point-set kernel. In: KDD ’22: the 28th ACM SIGKDD conference on knowledge discovery and data mining, Washington, DC, August 14–18, 2022. ACM, pp 525–533. https://doi.org/10.1145/3534678.3539323

  • He Z, Xu X, Deng S (2002) Squeezer: an efficient algorithm for clustering categorical data. J Comput Sci Technol 17(5):611–624. https://doi.org/10.1007/BF02948829

    Article  MathSciNet  MATH  Google Scholar 

  • He L, Ray N, Guan Y et al (2019) Fast large-scale spectral clustering via explicit feature mapping. IEEE Trans Cybern 49(3):1058–1071. https://doi.org/10.1109/TCYB.2018.2794998

    Article  Google Scholar 

  • Heller KA, Ghahramani Z (2005) Bayesian hierarchical clustering. In: Raedt LD, Wrobel S (eds) Machine learning, proceedings of the twenty-second international conference (ICML 2005), Bonn, August 7–11, 2005, ACM international conference proceeding series, vol 119. ACM, pp 297–304. https://doi.org/10.1145/1102351.1102389

  • Huang D, Wang C, Wu J et al (2020) Ultra-scalable spectral clustering and ensemble clustering. IEEE Trans Knowl Data Eng 32(6):1212–1226. https://doi.org/10.1109/TKDE.2019.2903410

    Article  Google Scholar 

  • Hubert L (1973) Monotone invariant clustering procedures. Psychometrika 38(1):47–62

    MATH  Google Scholar 

  • Hubert L, Arabie P (1985) Comparing partitions. J Classif 2(1):193–218

    MATH  Google Scholar 

  • Hulot A, Chiquet J, Jaffrézic F et al (2020) Fast tree aggregation for consensus hierarchical clustering. BMC Bioinform 21(1):120. https://doi.org/10.1186/s12859-020-3453-6

    Article  Google Scholar 

  • Ishizaka A, Lokman B, Tasiou M (2020) A stochastic multi-criteria divisive hierarchical clustering algorithm. Omega 103:102370

    Google Scholar 

  • Jain AK, Dubes RC (1988) Algorithms for clustering data. Prentice-Hall, Hoboken

    MATH  Google Scholar 

  • Jain AK, Duin RPW, Mao J (2000) Statistical pattern recognition: a review. IEEE Trans Pattern Anal Mach Intell 22(1):4–37. https://doi.org/10.1109/34.824819

    Article  Google Scholar 

  • Jalalat-evakilkandi M, Mirzaei A (2010) A new hierarchical-clustering combination scheme based on scatter matrices and nearest neighbor criterion. In: 2010 5th international symposium on telecommunications, IEEE, pp 904–908. https://doi.org/10.1109/ISTEL.2010.5734151

  • Jambu M, Tan SH, Stern D (1989) Exploration informatique et statistique des données. Dunod, Paris

    Google Scholar 

  • Jeantet I, Miklós Z, Gross-Amblard D (2020) Overlapping hierarchical clustering (OHC). In: Advances in intelligent data analysis XVIII—18th international symposium on intelligent data analysis, IDA 2020, Konstanz, April 27–29, 2020, proceedings, lecture notes in computer science, vol 12080. Springer, pp 261–273. https://doi.org/10.1007/978-3-030-44584-3_21

  • Jeon Y, Yoon S (2015) Multi-threaded hierarchical clustering by parallel nearest-neighbor chaining. IEEE Trans Parallel Distrib Syst 26(9):2534–2548. https://doi.org/10.1109/TPDS.2014.2355205

    Article  Google Scholar 

  • Johnson SC (1967) Hierarchical clustering schemes. Psychometrika 32(3):241–254

    MATH  Google Scholar 

  • Judd D, McKinley PK, Jain AK (1998) Large-scale parallel data clustering. IEEE Trans Pattern Anal Mach Intell 20(8):871–876. https://doi.org/10.1109/34.709614

    Article  Google Scholar 

  • Karypis G, Aggarwal R, Kumar V et al (1999a) Multilevel hypergraph partitioning: applications in VLSI domain. IEEE Trans Very Large Scale Integr Syst 7(1):69–79. https://doi.org/10.1109/92.748202

    Article  Google Scholar 

  • Karypis G, Han E, Kumar V (1999b) Chameleon: hierarchical clustering using dynamic modeling. Computer 32(8):68–75. https://doi.org/10.1109/2.781637

    Article  Google Scholar 

  • Kaufman L, Rousseeuw PJ (1990) Finding groups in data: an introduction to cluster analysis. Wiley, Hoboken. https://doi.org/10.1002/9780470316801

    Book  MATH  Google Scholar 

  • Kaufman L, Rousseeuw PJ (2009) Finding groups in data: an introduction to cluster analysis, vol 344. Wiley, Hoboken

    MATH  Google Scholar 

  • Kaur PJ et al (2015) Cluster quality based performance evaluation of hierarchical clustering method. In: 2015 1st international conference on next generation computing technologies (NGCT). IEEE, pp 649–653

  • Kernighan BW, Lin S (1970) An efficient heuristic procedure for partitioning graphs. Bell Syst Tech J 49(2):291–307. https://doi.org/10.1002/j.1538-7305.1970.tb01770.x

    Article  MATH  Google Scholar 

  • Kobren A, Monath N, Krishnamurthy A et al (2017) A hierarchical algorithm for extreme clustering. In: Proceedings of the 23rd ACM SIGKDD international conference on knowledge discovery and data mining, Halifax, NS, August 13–17, 2017. ACM, pp 255–264. https://doi.org/10.1145/3097983.3098079

  • Kohonen T (2001) Self-organizing maps, third edition. Springer series in information sciences. Springer, Cham. https://doi.org/10.1007/978-3-642-56927-2

    Book  Google Scholar 

  • Kotsiantis S, Pintelas P (2004) Recent advances in clustering: a brief survey. WSEAS Trans Inf Sci Appl 1(1):73–81

    Google Scholar 

  • Kumar P, Tripathy B (2009) MMeR: an algorithm for clustering heterogeneous data using rough set theory. Int J Rapid Manuf 1(2):189–207

    Google Scholar 

  • Kumar T, Vaidyanathan S, Ananthapadmanabhan H et al (2018) Hypergraph clustering: a modularity maximization approach. CoRR. arXiv:abs/1812.10869

  • Lance GN, Williams WT (1967) A general theory of classificatory sorting strategies: 1. Hierarchical systems. Comput J 9(4):373–380. https://doi.org/10.1093/comjnl/9.4.373

    Article  Google Scholar 

  • Lerato L, Niesler T (2015) Clustering acoustic segments using multi-stage agglomerative hierarchical clustering. PLoS ONE 10(10):e0141756

    Google Scholar 

  • Lewis-Beck M, Bryman AE, Liao TF (2003) The Sage encyclopedia of social science research methods. Sage Publications, Thousand Oaks

    Google Scholar 

  • Li M, Deng S, Wang L et al (2014) Hierarchical clustering algorithm for categorical data using a probabilistic rough set model. Knowl Based Syst 65:60–71. https://doi.org/10.1016/j.knosys.2014.04.008

    Article  Google Scholar 

  • Li S, Li W, Qiu J (2017) A novel divisive hierarchical clustering algorithm for geospatial analysis. ISPRS Int J Geo-Inf 6(1):30. https://doi.org/10.3390/ijgi6010030

    Article  Google Scholar 

  • Li Y, Hong Z, Feng W et al (2019) A hierarchical clustering based feature word extraction method. In: 2019 IEEE 3rd advanced information management, communicates, electronic and automation control conference (IMCEC). IEEE, pp 883–887

  • Lin Y, Dong X, Zheng L et al (2019) A bottom-up clustering approach to unsupervised person re-identification. In: The thirty-third AAAI conference on artificial intelligence, AAAI 2019, the thirty-first innovative applications of artificial intelligence conference, IAAI 2019, the ninth AAAI symposium on educational advances in artificial intelligence, EAAI 2019, Honolulu, Hawaii, January 27–February 1, 2019. AAAI Press, pp 8738–8745. https://doi.org/10.1609/aaai.v33i01.33018738

  • Liu H, Latecki LJ, Yan S (2015) Dense subgraph partition of positive hypergraphs. IEEE Trans Pattern Anal Mach Intell 37(3):541–554. https://doi.org/10.1109/TPAMI.2014.2346173

    Article  Google Scholar 

  • Liu J, Liu X, Yang Y et al (2021) Hierarchical multiple kernel clustering. In: Thirty-fifth AAAI conference on artificial intelligence. AAAI, pp 2–9

  • Lu Y, Wan Y (2013) PHA: a fast potential-based hierarchical agglomerative clustering method. Pattern Recognit 46(5):1227–1239. https://doi.org/10.1016/j.patcog.2012.11.017

    Article  Google Scholar 

  • Lu Y, Hou X, Chen X (2016) A novel travel-time based similarity measure for hierarchical clustering. Neurocomputing 173:3–8. https://doi.org/10.1016/j.neucom.2015.01.090

    Article  Google Scholar 

  • Ma X, Dhavala S (2018) Hierarchical clustering with prior knowledge. CoRR. arXiv:abs/1806.03432

  • Macnaughton-Smith P, Williams W, Dale M et al (1964) Dissimilarity analysis: a new technique of hierarchical sub-division. Nature 202(4936):1034–1035

    MATH  Google Scholar 

  • Mao Q, Zheng W, Wang L et al (2015) Parallel hierarchical clustering in linearithmic time for large-scale sequence analysis. In: 2015 IEEE international conference on data mining, ICDM 2015, Atlantic City, NJ, November 14–17, 2015. IEEE Computer Society, pp 310–319. https://doi.org/10.1109/ICDM.2015.90

  • Monath N, Kobren A, Krishnamurthy A et al (2019) Scalable hierarchical clustering with tree grafting. pp 1438–1448. https://doi.org/10.1145/3292500.3330929

  • Monath N, Dubey KA, Guruganesh G et al (2021) Scalable hierarchical agglomerative clustering. In: Proceedings of the 27th ACM SIGKDD conference on knowledge discovery & data mining. Association for Computing Machinery, New York, NY, KDD ’21, pp 1245–1255. https://doi.org/10.1145/3447548.3467404

  • Muhr M, Sabol V, Granitzer M (2010) Scalable recursive top-down hierarchical clustering approach with implicit model selection for textual data sets. In: Database and expert systems applications, DEXA, international workshops, Bilbao, August 30–September 3, 2010. IEEE Computer Society, pp 15–19. https://doi.org/10.1109/DEXA.2010.25

  • Mulinka P, Casas P, Fukuda K et al (2020) HUMAN—hierarchical clustering for unsupervised anomaly detection & interpretation. In: 11th international conference on network of the future, NoF 2020, Bordeaux, October 12–14, 2020. IEEE, pp 132–140. https://doi.org/10.1109/NoF50125.2020.9249194

  • Müllner D (2011) Modern hierarchical, agglomerative clustering algorithms. CoRR. arXiv:abs/1109.2378

  • Murtagh F (1983) A survey of recent advances in hierarchical clustering algorithms. Comput J 26(4):354–359. https://doi.org/10.1093/comjnl/26.4.354

    Article  MATH  Google Scholar 

  • Murtagh F, Contreras P (2012) Algorithms for hierarchical clustering: an overview. Wiley Interdiscip Rev Data Min Knowl Discov 2(1):86–97. https://doi.org/10.1002/widm.53

    Article  Google Scholar 

  • Murtagh F, Contreras P (2017) Algorithms for hierarchical clustering: an overview, II. Wiley Interdiscip Rev Data Min Knowl Discov. https://doi.org/10.1002/widm.1219

    Article  Google Scholar 

  • Murtagh F, Legendre P (2014) Ward’s hierarchical agglomerative clustering method: which algorithms implement Ward’s criterion? J Classif 31(3):274–295. https://doi.org/10.1007/s00357-014-9161-z

    Article  MathSciNet  MATH  Google Scholar 

  • Myers C, Rabiner L, Rosenberg A (1980) Performance tradeoffs in dynamic time warping algorithms for isolated word recognition. IEEE Trans Acoust Speech Signal Process 28(6):623–635

    MATH  Google Scholar 

  • Narita K, Hochin T, Nomiya H (2018) Incremental clustering for hierarchical clustering. In: 5th international conference on computational science/intelligence and applied informatics, CSII 2018, Yonago, July 10–12, 2018. IEEE, pp 102–107. https://doi.org/10.1109/CSII.2018.00025

  • Narita K, Hochin T, Hayashi Y et al (2020) Incremental hierarchical clustering for data insertion and its evaluation. Int J Softw Innov 8(2):1–22. https://doi.org/10.4018/IJSI.2020040101

    Article  Google Scholar 

  • Nasiriani N, Squicciarini AC, Saldanha Z et al (2019) Hierarchical clustering for discrimination discovery: a top-down approach. In: 2nd IEEE international conference on artificial intelligence and knowledge engineering, AIKE 2019, Sardinia, June 3–5, 2019. IEEE, pp 187–194. https://doi.org/10.1109/AIKE.2019.00041

  • Nazari Z, Kang D (2018) A new hierarchical clustering algorithm with intersection points. In: 2018 5th IEEE Uttar Pradesh section international conference on electrical, electronics and computer engineering (UPCON). IEEE, pp 1–5

  • Neto ACA, Sander J, Campello RJGB et al (2021) Efficient computation and visualization of multiple density-based clustering hierarchies. IEEE Trans Knowl Data Eng 33(8):3075–3089. https://doi.org/10.1109/TKDE.2019.2962412

    Article  Google Scholar 

  • Nikpour S, Asadi S (2022) A dynamic hierarchical incremental learning-based supervised clustering for data stream with considering concept drift. J Ambient Intell Humaniz Comput 13(6):2983–3003. https://doi.org/10.1007/s12652-021-03673-0

    Article  Google Scholar 

  • Núñez-Valdéz ER, Solanki VK, Balakrishna S et al (2020) Incremental hierarchical clustering driven automatic annotations for unifying IoT streaming data. Int J Interact Multim Artif Intell 6(2):1–15. https://doi.org/10.9781/ijimai.2020.03.001

    Article  Google Scholar 

  • Omran MGH, Engelbrecht AP, Salman AA (2007) An overview of clustering methods. Intell Data Anal 11(6):583–605

    Google Scholar 

  • Pang N, Zhang J, Zhang C et al (2019) Parallel hierarchical subspace clustering of categorical data. IEEE Trans Comput 68(4):542–555. https://doi.org/10.1109/TC.2018.2879332

    Article  MathSciNet  MATH  Google Scholar 

  • Parmar D, Wu T, Blackhurst J (2007) MMR: an algorithm for clustering categorical data using rough set theory. Data Knowl Eng 63(3):879–893. https://doi.org/10.1016/j.datak.2007.05.005

    Article  Google Scholar 

  • Qin J, Lewis DP, Noble WS (2003) Kernel hierarchical gene clustering from microarray expression data. Bioinformatics 19(16):2097–2104. https://doi.org/10.1093/bioinformatics/btg288

    Article  Google Scholar 

  • Qin H, Ma X, Herawan T et al (2014) MGR: an information theory based hierarchical divisive clustering algorithm for categorical data. Knowl Based Syst 67:401–411. https://doi.org/10.1016/j.knosys.2014.03.013

    Article  Google Scholar 

  • Rabin J, Ferradans S, Papadakis N (2014) Adaptive color transfer with relaxed optimal transport. In: 2014 IEEE international conference on image processing, ICIP 2014, Paris, October 27–30, 2014. IEEE, pp 4852–4856. https://doi.org/10.1109/ICIP.2014.7025983

  • Rahman MA, Rahman MM, Mollah MNH et al (2018) Robust hierarchical clustering for metabolomics data analysis in presence of cell-wise and case-wise outliers. In: 2018 international conference on computer, communication, chemical, material and electronic engineering (IC4ME2). IEEE, pp 1–4. https://doi.org/10.1109/IC4ME2.2018.8465616

  • Reddy CK, Vinzamuri B (2013) A survey of partitional and hierarchical clustering algorithms. In: Aggarwal CC, Reddy CK (eds) Data clustering: algorithms and applications. CRC Press, Boca Raton, pp 87–110

    Google Scholar 

  • Redner RA, Walker HF (1984) Mixture densities, maximum likelihood and the EM algorithm. SIAM Rev 26(2):195–239

    MathSciNet  MATH  Google Scholar 

  • Rocha C, Dias LC (2013) MPOC: an agglomerative algorithm for multicriteria partially ordered clustering. 4OR 11(3):253–273. https://doi.org/10.1007/s10288-013-0228-1

    Article  MathSciNet  MATH  Google Scholar 

  • Ros F, Guillaume S (2019) A hierarchical clustering algorithm and an improvement of the single linkage criterion to deal with noise. Expert Syst Appl 128:96–108

    Google Scholar 

  • Ros F, Guillaume S, Hajji ME et al (2020) KdMutual: a novel clustering algorithm combining mutual neighboring and hierarchical approaches using a new selection criterion. Knowl Based Syst 204(106):220. https://doi.org/10.1016/j.knosys.2020.106220

    Article  Google Scholar 

  • Roux M (2018) A comparative study of divisive and agglomerative hierarchical clustering algorithms. J Classif 35(2):345–366. https://doi.org/10.1007/s00357-018-9259-9

    Article  MathSciNet  MATH  Google Scholar 

  • Sabarish B, Karthi R, Kumar TG (2020) Graph similarity-based hierarchical clustering of trajectory data. Procedia Comput Sci 171:32–41. https://doi.org/10.1016/j.procs.2020.04.004

    Article  Google Scholar 

  • Sahoo N, Callan J, Krishnan R et al (2006) Incremental hierarchical clustering of text documents. In: Proceedings of the 2006 ACM CIKM international conference on information and knowledge management, Arlington, VA, November 6–11, 2006. ACM, pp 357–366. https://doi.org/10.1145/1183614.1183667

  • Salton G (1975) A vector space model for information retrieval. J ASIS 18(11): 613–620

  • Sander J, Qin X, Lu Z et al (2003) Automatic extraction of clusters from hierarchical clustering representations. In: Whang KY, Jeon J, Shim K et al (eds) Advances in knowledge discovery and data mining. Springer, Berlin, Heidelberg, pp 75–87

    Google Scholar 

  • Saunders A, Ashlock DA, Houghten SK (2018) Hierarchical clustering and tree stability. In: 2018 IEEE conference on computational intelligence in bioinformatics and computational biology, CIBCB 2018, Saint Louis, MO, May 30–June 2, 2018. IEEE, pp 1–8. https://doi.org/10.1109/CIBCB.2018.8404978

  • Sharan R, Shamir R (2000) Center CLICK: a clustering algorithm with applications to gene expression analysis. In: Proceedings of the eighth international conference on intelligent systems for molecular biology, August 19–23, 2000, La Jolla/San Diego, CA. AAAI, pp 307–316

  • Sharma S, Batra N et al (2019) Comparative study of single linkage, complete linkage, and ward method of agglomerative clustering. In: 2019 international conference on machine learning, big data, cloud and parallel computing (COMITCon). IEEE, pp 568–573

  • Shimizu T, Sakurai K (2018) Comprehensive data tree by actor messaging for incremental hierarchical clustering. In: 2018 IEEE 42nd annual computer software and applications conference, COMPSAC 2018, Tokyo, 23–27 July 2018, vol 1. IEEE Computer Society, pp 801–802. https://doi.org/10.1109/COMPSAC.2018.00127

  • Sisodia D, Singh L, Sisodia S et al (2012) Clustering techniques: a brief survey of different clustering algorithms. Int J Latest Trends Eng Technol 1(3):82–87

    Google Scholar 

  • Sneath PH, Sokal RR (1975) Numerical taxonomy. The principles and practice of numerical classification, vol 50. Williams WT published in association with Stony Brook University. https://doi.org/10.1086/408956

  • Steinbach M, Karypis G, Kumar V (2000) A comparison of document clustering techniques. https://hdl.handle.net/11299/215421, May 23, 2000

  • Székely GJ, Rizzo ML (2005) Hierarchical clustering via joint between-within distances: extending Ward’s minimum variance method. J Classif 22(2):151–183. https://doi.org/10.1007/s00357-005-0012-9

    Article  MathSciNet  MATH  Google Scholar 

  • Takumi S, Miyamoto S (2012) Top-down vs bottom-up methods of linkage for asymmetric agglomerative hierarchical clustering. In: 2012 IEEE international conference on granular computing, GrC 2012, Hangzhou, August 11–13, 2012. IEEE Computer Society, pp 459–464. https://doi.org/10.1109/GrC.2012.6468689

  • Tan P, Steinbach M, Karpatne A et al (2019) Introduction to data mining, Second Edition. Pearson, Harlow

    Google Scholar 

  • Toujani R, Akaichi J (2018) GHHP: genetic hybrid hierarchical partitioning for community structure in social medias networks. In: 2018 IEEE smartWorld, ubiquitous intelligence & computing, advanced & trusted computing, scalable computing & communications, cloud & big data computing, internet of people and smart city innovation, SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI 2018, Guangzhou, October 8–12, 2018. IEEE, pp 1146–1153. https://doi.org/10.1109/SmartWorld.2018.00199

  • Tripathy B, Ghosh A (2011a) SDR: an algorithm for clustering categorical data using rough set theory. In: 2011 IEEE recent advances in intelligent computational systems. IEEE, pp 867–872

  • Tripathy B, Ghosh A (2011b) SSDR: an algorithm for clustering categorical data using rough set theory. Adv Appl Sci Res 2(3):314–326

    Google Scholar 

  • Tripathy B, Goyal A, Chowdhury R et al (2017) MMeMeR: an algorithm for clustering heterogeneous data using rough set theory. Int J Intell Syst Appl 9(8):25

    Google Scholar 

  • Tsekouras G, Kotoulas P, Tsirekis C et al (2008) A pattern recognition methodology for evaluation of load profiles and typical days of large electricity customers. Electr Power Syst Res 78(9):1494–1510

    Google Scholar 

  • Turi R (2001) Clustering-based colour image segmentation. PhD Thesis, Monash University

  • Varshney AK, Muhuri PK, Lohani QMD (2022) PIFHC: the probabilistic intuitionistic fuzzy hierarchical clustering algorithm. Appl Soft Comput 120(108):584. https://doi.org/10.1016/j.asoc.2022.108584

    Article  Google Scholar 

  • Veldt N, Benson AR, Kleinberg JM (2020) Localized flow-based clustering in hypergraphs. CoRR. arXiv:abs/2002.09441

  • Vidal E, Granitto PM, Bayá A (2014) Discussing a new divisive hierarchical clustering algorithm. In: XLIII Jornadas Argentinas de Informática e Investigación Operativa (43JAIIO)-XV Argentine symposium on artificial intelligence (ASAI)(Buenos Aires, 2014)

  • von Luxburg U (2007) A tutorial on spectral clustering. Stat Comput 17(4):395–416. https://doi.org/10.1007/s11222-007-9033-z

    Article  MathSciNet  Google Scholar 

  • Wang T, Lu Y, Han Y (2017) Clustering of high dimensional handwritten data by an improved hypergraph partition method. In: Intelligent computing methodologies—13th international conference, ICIC 2017, Liverpool, August 7–10, 2017, proceedings, part III, lecture notes in computer science, vol 10363. Springer, pp 323–334. https://doi.org/10.1007/978-3-319-63315-2_28

  • Wishart D (1969) An algorithm for hierarchical classifications. Biometrics 25:165–170

    Google Scholar 

  • Xi Y, Lu Y (2020) Multi-stage hierarchical clustering method based on hypergraph. In: Intelligent computing methodologies—16th international conference, ICIC 2020, Bari, October 2–5, 2020, proceedings, part III, lecture notes in computer science, vol 12465. Springer, pp 432–443. https://doi.org/10.1007/978-3-030-60796-8_37

  • Xiong T, Wang S, Mayers A et al (2012) DHCC: divisive hierarchical clustering of categorical data. Data Min Knowl Discov 24(1):103–135. https://doi.org/10.1007/s10618-011-0221-2

    Article  MathSciNet  MATH  Google Scholar 

  • Xu D, Tian Y (2015) A comprehensive survey of clustering algorithms. Ann Data Sci 2(2):165–193

    MathSciNet  Google Scholar 

  • Xu R, Wunsch DC II (2005) Survey of clustering algorithms. IEEE Trans Neural Netw 16(3):645–678. https://doi.org/10.1109/TNN.2005.845141

    Article  Google Scholar 

  • Yamada Y, Masuyama N, Amako N et al (2020) Divisive hierarchical clustering based on adaptive resonance theory. In: International symposium on community-centric systems, CcS 2020, Hachioji, Tokyo, September 23–26, 2020. IEEE, pp 1–6. https://doi.org/10.1109/CcS49175.2020.9231474

  • Yang J, Grunsky E, Cheng Q (2019) A novel hierarchical clustering analysis method based on Kullback–Leibler divergence and application on dalaimiao geochemical exploration data. Comput Geosci 123:10–19. https://doi.org/10.1016/j.cageo.2018.11.003

    Article  Google Scholar 

  • Yu F, Dong K, Chen F et al (2007) Clustering time series with granular dynamic time warping method. In: 2007 IEEE international conference on granular computing, GrC 2007, San Jose, CA, 2–4 November 2007. IEEE Computer Society, pp 393–398. https://doi.org/10.1109/GrC.2007.34

  • Yu M, Hillebrand A, Tewarie P et al (2015) Hierarchical clustering in minimum spanning trees. Chaos 25(2):023107

    MathSciNet  Google Scholar 

  • Zahn CT (1971) Graph-theoretical methods for detecting and describing gestalt clusters. IEEE Trans Comput 20(1):68–86. https://doi.org/10.1109/T-C.1971.223083

    Article  MATH  Google Scholar 

  • Zeng J, Gong L, Wang Q et al (2009) Hierarchical clustering for topic analysis based on variable feature selection. In: 2009 sixth international conference on fuzzy systems and knowledge discovery. IEEE, pp 477–481

  • Zeng K, Ning M, Wang Y et al (2020) Hierarchical clustering with hard-batch triplet loss for person re-identification. In: 2020 IEEE/CVF conference on computer vision and pattern recognition, CVPR 2020, Seattle, WA, June 13–19, 2020. IEEE, pp 13654–13662. https://doi.org/10.1109/CVPR42600.2020.01367

  • Zhang T, Ramakrishnan R, Livny M (1996) BIRCH: an efficient data clustering method for very large databases. In: Proceedings of the 1996 ACM SIGMOD international conference on management of data, Montreal, QC, June 4–6, 1996. ACM Press, pp 103–114. https://doi.org/10.1145/233269.233324

  • Zhang W, Wang X, Zhao D et al (2012) Graph degree linkage: agglomerative clustering on a directed graph. In: Computer vision—ECCV 2012—12th European conference on computer vision, Florence, October 7–13, 2012, proceedings, part I, lecture notes in computer science, vol 7572. Springer, pp 428–441. https://doi.org/10.1007/978-3-642-33718-5_31

  • Zhang W, Zhao D, Wang X (2013) Agglomerative clustering via maximum incremental path integral. Pattern Recogn 46(11):3056–3065. https://doi.org/10.1016/j.patcog.2013.04.013

    Article  MATH  Google Scholar 

  • Zhao Y, Karypis G (2002) Evaluation of hierarchical clustering algorithms for document datasets. In: Proceedings of the 2002 ACM CIKM international conference on information and knowledge management, McLean, VA, November 4–9, 2002. ACM, pp 515–524. https://doi.org/10.1145/584792.584877

  • Zhao H, Qi Z (2010) Hierarchical agglomerative clustering with ordering constraints. In: Third international conference on knowledge discovery and data mining, WKDD 2010, Phuket, 9–10 January 2010. IEEE Computer Society, pp 195–199. https://doi.org/10.1109/WKDD.2010.123

  • Zhao D, Tang X (2008) Cyclizing clusters via zeta function of a graph. In: Advances in neural information processing systems 21, proceedings of the twenty-second annual conference on neural information processing systems, Vancouver, BC, December 8–11, 2008. Curran Associates, Inc., pp 1953–1960

  • Zhao Y, Karypis G, Fayyad UM (2005) Hierarchical clustering algorithms for document datasets. Data Min Knowl Discov 10(2):141–168. https://doi.org/10.1007/s10618-005-0361-3

    Article  MathSciNet  Google Scholar 

  • Zhao W, Li B, Gu Q et al (2020) Improved hierarchical clustering with non-locally enhanced features for unsupervised person re-identification. In: 2020 international joint conference on neural networks, IJCNN 2020, Glasgow, July 19–24, 2020. IEEE, pp 1–8. https://doi.org/10.1109/IJCNN48605.2020.9206722

  • Zhou D, Huang J, Schölkopf B (2006) Learning with hypergraphs: clustering, classification, and embedding. In: Advances in neural information processing systems 19, proceedings of the twentieth annual conference on neural information processing systems, Vancouver, BC, December 4–7, 2006. MIT Press, pp 1601–1608

  • Zhou R, Zhang Y, Feng S et al (2018) A novel hierarchical clustering algorithm based on density peaks for complex datasets. Complex. https://doi.org/10.1155/2018/2032461

    Article  Google Scholar 

  • Zhu Y, Ting KM, Jin Y et al (2022) Hierarchical clustering that takes advantage of both density-peak and density-connectivity. Inf Syst 103(C):101871. https://doi.org/10.1016/j.is.2021.101871

    Article  Google Scholar 

Download references

Funding

This work is supported by the National Key R&D Program of China (Grant No. 2017YFE0111900, 2018YFB1003205), the Higher Education Innovation Fund of Gansu Province (Grants No. 2020B-214), and the Natural Science Foundation of Gansu Province (Grants No. 20JR10RG304).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yonggang Lu.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 865 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ran, X., Xi, Y., Lu, Y. et al. Comprehensive survey on hierarchical clustering algorithms and the recent developments. Artif Intell Rev 56, 8219–8264 (2023). https://doi.org/10.1007/s10462-022-10366-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10462-022-10366-3

Keywords