Skip to main content

Advertisement

Log in

Radiomics and artificial intelligence in breast imaging: a survey

  • Published:
Artificial Intelligence Review Aims and scope Submit manuscript

Abstract

Medical imaging techniques, such as mammography, ultrasound and magnetic resonance imaging, plays an integral role in the detection and characterization of breast cancer. Although computers are believed to gain an important role in the assessment of medical images for breast evaluation for at least two decades, their impact on performance has not lived up to expectations yet. With the continuous and rapid development of computer science, artificial intelligence (AI) approaches, like machine learning and deep learning, have been introduced for the analysis of medical images. Because of the remarkable advances in data extraction and analysis in medical imaging compared to conventional feature-based techniques, AI has reignited the interest in automated breast image interpretation. Extensive research is conducted on accurate detection and classification of breast lesions, and more specifically, the predictive and prognostic features of breast cancer by radiomics. Radiomics exploits the fact that image data is nowadays numerical and can also be used to generate quantitative biomarkers. In this comprehensive review, we cover the progress, application and challenge of radiomics and AI in breast cancer diagnosis in recent years, as well as the impact and significance of AI on future breast cancer research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

Not applicable.

References

  • Aerts HJ (2016) The potential of Radiomic-Based phenotyping in Precision Medicine: a review. JAMA Oncol 2(12):1636–1642. https://doi.org/10.1001/jamaoncol.2016.2631

    Article  Google Scholar 

  • Arefan D, Chai R, Sun M et al (2020a) Machine learning prediction of axillary lymph node metastasis in breast cancer: 2D versus 3D radiomic features. Med Phys 47(12):6334–6342

    Google Scholar 

  • Arefan D, Mohamed AA, Berg WA et al (2020b) Deep learning modeling using normal mammograms for predicting breast cancer risk. Med Phys 47(1):110–118

    Google Scholar 

  • Beau A-B, Andersen PK, Vejborg I et al (2018) Limitations in the effect of screening on breast cancer mortality. J Clin Oncol 36(30):2988

    Google Scholar 

  • Becker AS, Marcon M, Ghafoor S et al (2017) Deep learning in mammography: diagnostic accuracy of a multipurpose image analysis software in the detection of breast cancer. Invest Radiol 52(7):434–440

    Google Scholar 

  • Bian T, Wu Z, Lin Q et al (2020) Radiomic signatures derived from multiparametric MRI for the pretreatment prediction of response to neoadjuvant chemotherapy in breast cancer. Br J Radiol 93(1115):20200287

    Google Scholar 

  • Bickelhaupt S, Laun FB, Tesdorff J et al (2016) Fast and noninvasive characterization of suspicious lesions detected at breast cancer X-ray screening: capability of diffusion-weighted MR imaging with MIPs. Radiology 278(3):689–697

    Google Scholar 

  • Bickelhaupt S, Paech D, Kickingereder P et al (2017) Prediction of malignancy by a radiomic signature from contrast agent-free diffusion MRI in suspicious breast lesions found on screening mammography. J Magn Reson Imaging 46(2):604–616

    Google Scholar 

  • Bickelhaupt S, Jaeger PF, Laun FB et al (2018) Radiomics based on adapted diffusion kurtosis imaging helps to clarify most mammographic findings suspicious for cancer. Radiology 287(3):761–770

    Google Scholar 

  • Braman NM, Etesami M, Prasanna P et al (2017) Intratumoral and peritumoral radiomics for the pretreatment prediction of pathological complete response to neoadjuvant chemotherapy based on breast DCE-MRI. Breast Cancer Res 19(1):57

    Google Scholar 

  • Braman N, Adoui ME, Vulchi M et al (2020) Deep learning-based prediction of response to HER2-targeted neoadjuvant chemotherapy from pre-treatment dynamic breast MRI: a multi-institutional validation study. arXiv preprint arXiv:200108570

  • Burt JR, Torosdagli N, Khosravan N et al (2018) Deep learning beyond cats and dogs: recent advances in diagnosing breast cancer with deep neural networks. Br J Radiol 91(1089):20170545

    Google Scholar 

  • Caballo M, Sanderink WB, Han L et al (2022) Four-Dimensional Machine Learning Radiomics for the pretreatment Assessment of breast Cancer pathologic complete response to Neoadjuvant Chemotherapy in Dynamic contrast‐enhanced MRI. Journal of Magnetic Resonance Imaging

  • Calisto FM, Santiago C, Nunes N et al (2022) BreastScreening-AI: evaluating medical intelligent agents for human-AI interactions. Artif Intell Med 127:102285

    Google Scholar 

  • Chen S, Shu Z, Li Y et al (2020a) Machine learning-based radiomics nomogram using magnetic resonance images for prediction of neoadjuvant chemotherapy efficacy in breast cancer patients. Front Oncol 10:1410

    Google Scholar 

  • Chen X, Chen X, Yang J et al (2020b) Combining dynamic contrast-enhanced magnetic resonance imaging and apparent diffusion coefficient maps for a radiomics nomogram to predict pathological complete response to neoadjuvant chemotherapy in breast cancer patients. J Comput Assist Tomogr 44(2):275–283

    Google Scholar 

  • Choudhery S, Gomez-Cardona D, Favazza CP et al (2020) MRI radiomics for assessment of molecular subtype, pathological complete response, and residual cancer burden in breast cancer patients treated with neoadjuvant chemotherapy. Academic radiology

  • Comes MC, Fanizzi A, Bove S et al (2021a) Early prediction of neoadjuvant chemotherapy response by exploiting a transfer learning approach on breast DCE-MRIs. Sci Rep 11(1):1–12

    Google Scholar 

  • Comes MC, La Forgia D, Didonna V et al (2021b) Early prediction of breast cancer recurrence for patients treated with neoadjuvant chemotherapy: a transfer learning approach on DCE-MRIs. Cancers 13(10):2298

    Google Scholar 

  • Crivelli P, Ledda RE, Parascandolo N et al (2018) A New Challenge for Radiologists: Radiomics in breast Cancer. Biomed Res Int 2018:6120703. https://doi.org/10.1155/2018/6120703

    Article  Google Scholar 

  • Cui X, Wang N, Zhao Y et al (2019) Preoperative prediction of axillary lymph node metastasis in breast cancer using radiomics features of DCE-MRI. Sci Rep 9(1):1–8

    Google Scholar 

  • Daimiel Naranjo I, Gibbs P, Reiner JS et al (2021) Radiomics and Machine learning with multiparametric breast MRI for Improved Diagnostic accuracy in breast Cancer diagnosis. Diagnostics 11(6):919

    Google Scholar 

  • Dalmis MU, Gubern-Mérida A, Vreemann S et al (2019) Artificial intelligence–based classification of breast lesions imaged with a multiparametric breast mri protocol with ultrafast DCE-MRI, T2, and DWI. Invest Radiol 54(6):325–332

    Google Scholar 

  • DiCenzo D, Quiaoit K, Fatima K et al (2020) Quantitative ultrasound radiomics in predicting response to neoadjuvant chemotherapy in patients with locally advanced breast cancer: Results from multi-institutional study. Cancer Medicine

  • Dietzel M, Schulz-Wendtland R, Ellmann S et al (2020) Automated volumetric radiomic analysis of breast cancer vascularization improves survival prediction in primary breast cancer. Sci Rep 10(1):1–11

    Google Scholar 

  • Domingo L, Hofvind S, Hubbard RA et al (2016) Cross-national comparison of screening mammography accuracy measures in US, Norway, and Spain. Eur Radiol 26(8):2520–2528

    Google Scholar 

  • Dong Y, Feng Q, Yang W et al (2018) Preoperative prediction of sentinel lymph node metastasis in breast cancer based on radiomics of T2-weighted fat-suppression and diffusion-weighted MRI. Eur Radiol 28(2):582–591

    Google Scholar 

  • Drukker K, Li H, Antropova N et al (2018) Most-enhancing tumor volume by MRI radiomics predicts recurrence-free survival “early on” in neoadjuvant treatment of breast cancer. Cancer Imaging 18(1):1–9

    Google Scholar 

  • Drukker K, Edwards AV, Doyle C et al (2019a) Breast MRI radiomics for the pretreatment prediction of response to neoadjuvant chemotherapy in node-positive breast cancer patients. J Med Imaging 6(3):034502

    Google Scholar 

  • Drukker K, Giger ML, Joe BN et al (2019b) Combined benefit of quantitative three-compartment breast image analysis and mammography radiomics in the classification of breast masses in a clinical data set. Radiology 290(3):621–628

    Google Scholar 

  • Duanmu H, Huang PB, Brahmavar S et al (2020) Prediction of pathological complete response to neoadjuvant chemotherapy in breast cancer using deep learning with integrative imaging, molecular and demographic data. In: International conference on medical image computing and computer-assisted intervention. Springer, pp 242–252

  • Eben JE, Braman N, Madabhushi A (2019) Response estimation through spatially oriented neural network and texture ensemble (resonate). In: International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer, pp 602–610

  • El Adoui M, Larhmam MA, Drisis S et al (2019) Deep learning approach predicting breast tumor response to neoadjuvant treatment using DCE-MRI volumes acquired before and after chemotherapy. Medical imaging 2019: computer-aided diagnosis. International Society for Optics and Photonics, p 109502I

  • Eun NL, Kang D, Son EJ et al (2020) Texture analysis with 3.0-T MRI for association of response to neoadjuvant chemotherapy in breast cancer. Radiology 294(1):31–41

    Google Scholar 

  • Fan M, Li H, Wang S et al (2017) Radiomic analysis reveals DCE-MRI features for prediction of molecular subtypes of breast cancer. PLoS ONE 12(2):e0171683. https://doi.org/10.1371/journal.pone.0171683

    Article  Google Scholar 

  • Fan M, Liu Z, Xie S et al (2019a) Integration of dynamic contrast-enhanced magnetic resonance imaging and T2-weighted imaging radiomic features by a canonical correlation analysis-based feature fusion method to predict histological grade in ductal breast carcinoma. Phys Med Biol 64(21):215001

    Google Scholar 

  • Fan M, Zhang P, Wang Y et al (2019b) Radiomic analysis of imaging heterogeneity in tumours and the surrounding parenchyma based on unsupervised decomposition of DCE-MRI for predicting molecular subtypes of breast cancer. Eur Radiol 29(8):4456–4467

    Google Scholar 

  • Fan M, Chen H, You C et al (2021) Radiomics of tumor heterogeneity during longitudinal dynamic contrast-enhanced magnetic resonance imaging for predicting response to neoadjuvant chemotherapy in breast cancer. Front Mol Biosci 8:119

    Google Scholar 

  • Fenton JJ, Taplin SH, Carney PA et al (2007) Influence of computer-aided detection on performance of screening mammography. N Engl J Med 356(14):1399–1409

    Google Scholar 

  • Freeman K, Geppert J, Stinton C et al (2021) Use of artificial intelligence for image analysis in breast cancer screening programmes: systematic review of test accuracy. bmj 374

  • Fusco R, Piccirillo A, Sansone M et al (2021a) Radiomics and Artificial Intelligence Analysis with Textural Metrics extracted by contrast-enhanced Mammography in the breast lesions classification. Diagnostics 11(5):815

    Google Scholar 

  • Fusco R, Piccirillo A, Sansone M et al (2021b) Radiomic and Artificial Intelligence Analysis with Textural Metrics, morphological and dynamic perfusion features extracted by dynamic contrast-enhanced magnetic resonance imaging in the classification of breast lesions. Appl Sci 11(4):1880

    Google Scholar 

  • Gao Y, Luo Y, Zhao C et al (2021) Nomogram based on radiomics analysis of primary breast cancer ultrasound images: prediction of axillary lymph node tumor burden in patients. Eur Radiol 31(2):928–937

    Google Scholar 

  • Geras KJ, Mann RM, Moy L (2019) Artificial Intelligence for Mammography and Digital breast tomosynthesis: current concepts and future perspectives. Radiology 293(2):246–259. https://doi.org/10.1148/radiol.2019182627

    Article  Google Scholar 

  • Giger ML (2010) Update on the potential of computer-aided diagnosis for breast cancer. Future Oncol 6(1):1–4

    Google Scholar 

  • Gillies RJ, Kinahan PE, Hricak H (2016) Radiomics: images are more than pictures, they are data. Radiology 278(2):563–577

    Google Scholar 

  • Goldhirsch A, Winer EP, Coates A et al (2013) Personalizing the treatment of women with early breast cancer: highlights of the St Gallen International Expert Consensus on the primary therapy of early breast Cancer 2013. Ann Oncol 24(9):2206–2223

    Google Scholar 

  • Gu J, Tong T, He C et al (2022) Deep learning radiomics of ultrasonography can predict response to neoadjuvant chemotherapy in breast cancer at an early stage of treatment: a prospective study. Eur Radiol 32(3):2099–2109

    Google Scholar 

  • Gullo RL, Daimiel I, Saccarelli CR et al (2020) Improved characterization of sub-centimeter enhancing breast masses on MRI with radiomics and machine learning in BRCA mutation carriers. Eur Radiol 30(12):6721–6731

    Google Scholar 

  • Guo X, Liu Z, Sun C et al (2020) Deep learning radiomics of ultrasonography: identifying the risk of axillary non-sentinel lymph node involvement in primary breast cancer. EBioMedicine 60:103018

    Google Scholar 

  • Ha R, Chang P, Karcich J et al (2018) Axillary lymph node evaluation utilizing convolutional neural networks using MRI dataset. J Digit Imaging 31(6):851–856

    Google Scholar 

  • Ha R, Chin C, Karcich J et al (2019a) Prior to initiation of chemotherapy, can we predict breast tumor response? Deep learning convolutional neural networks approach using a breast MRI tumor dataset. J Digit Imaging 32(5):693–701

    Google Scholar 

  • Ha R, Mutasa S, Karcich J et al (2019b) Predicting breast cancer molecular subtype with MRI dataset utilizing convolutional neural network algorithm. J Digit Imaging 32(2):276–282

    Google Scholar 

  • Hadjiiski L, Sahiner B, Chan H-P (2006) Advances in CAD for diagnosis of breast cancer. Curr Opin Obst Gynecol 18(1):64

    Google Scholar 

  • Han L, Zhu Y, Liu Z et al (2019) Radiomic nomogram for prediction of axillary lymph node metastasis in breast cancer. Eur Radiol 29(7):3820–3829

    Google Scholar 

  • He K, Zhang X, Ren S et al (2016) Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp 770–778

  • Hu Q, Whitney HM, Giger ML (2020) Radiomics methodology for breast cancer diagnosis using multiparametric magnetic resonance imaging. J Med Imaging 7(4):044502

    Google Scholar 

  • Huang G, Liu Z, Van Der Maaten L et al (2017) Densely connected convolutional networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp 4700–4708

  • Huynh BQ, Li H, Giger ML (2016) Digital mammographic tumor classification using transfer learning from deep convolutional neural networks. J Med Imaging 3(3):034501

    Google Scholar 

  • Jahani N, Cohen E, Hsieh M-K et al (2019) Prediction of treatment response to neoadjuvant chemotherapy for breast cancer via early changes in tumor heterogeneity captured by DCE-MRI registration. Sci Rep 9(1):1–12

    Google Scholar 

  • Jiang Z, Yin J (2020) Performance evaluation of texture analysis based on kinetic parametric maps from breast DCE-MRI in classifying benign from malignant lesions. J Surg Oncol 121(8):1181–1190

    Google Scholar 

  • Jiang D, Dou W, Vosters L et al (2018) Denoising of 3D magnetic resonance images with multi-channel residual learning of convolutional neural network. Japanese J Radiol 36(9):566–574

    Google Scholar 

  • Jiang M, Li C-L, Luo X-M et al (2021a) Radiomics model based on shear-wave elastography in the assessment of axillary lymph node status in early-stage breast cancer. Eur Radiol :1–13

  • Jiang M, Li C-L, Luo X-M et al (2021b) Ultrasound-based deep learning radiomics in the assessment of pathological complete response to neoadjuvant chemotherapy in locally advanced breast cancer. Eur J Cancer 147:95–105

    Google Scholar 

  • Jiang M, Zhang D, Tang S-C et al (2021c) Deep learning with convolutional neural network in the assessment of breast cancer molecular subtypes based on US images: a multicenter retrospective study. Eur Radiol 31(6):3673–3682

    Google Scholar 

  • Joo S, Ko ES, Kwon S et al (2021) Multimodal deep learning models for the prediction of pathologic response to neoadjuvant chemotherapy in breast cancer. Sci Rep 11(1):1–8

    Google Scholar 

  • Kim H-E, Kim HH, Han B-K et al (2020a) Changes in cancer detection and false-positive recall in mammography using artificial intelligence: a retrospective, multireader study. Lancet Digit Health 2(3):e138–e148

    Google Scholar 

  • Kim S, Kim MJ, Kim E-K et al (2020b) MRI radiomic features: Association with disease-free survival in patients with triple-negative breast cancer. Sci Rep 10(1):1–8

    Google Scholar 

  • Kim S-Y, Cho N, Choi Y et al (2021) Factors affecting pathologic complete response following neoadjuvant chemotherapy in breast cancer: development and validation of a predictive nomogram. Radiology 299(2):290–300

    Google Scholar 

  • Koçak B, Durmaz E, Ateş E et al (2019) Radiomics with artificial intelligence: a practical guide for beginners. Diagn Interventional Radiol 25(6):485

    Google Scholar 

  • Koh J, Lee E, Han K et al (2020) Three-dimensional radiomics of triple-negative breast cancer: prediction of systemic recurrence. Sci Rep 10(1):1–9

    Google Scholar 

  • Kong X, Tan T, Bao L et al (2018) Classification of breast mass in 3D ultrasound images with annotations based on convolutional neural networks. Chin J Biomedical Eng 37(4):414–422

    Google Scholar 

  • Kontos D, Winham SJ, Oustimov A et al (2019) Radiomic phenotypes of mammographic parenchymal complexity: toward augmenting breast density in breast cancer risk assessment. Radiology 290(1):41–49

    Google Scholar 

  • Kooi T, Litjens G, Van Ginneken B et al (2017a) Large scale deep learning for computer aided detection of mammographic lesions. Med Image Anal 35:303–312

    Google Scholar 

  • Kooi T, van Ginneken B, Karssemeijer N et al (2017b) Discriminating solitary cysts from soft tissue lesions in mammography using a pretrained deep convolutional neural network. Med Phys 44(3):1017–1027

    Google Scholar 

  • Kumar V, Gu Y, Basu S et al (2012) Radiomics: the process and the challenges. Magn Reson Imaging 30(9):1234–1248

    Google Scholar 

  • Lambin P, Rios-Velazquez E, Leijenaar R et al (2012) Radiomics: extracting more information from medical images using advanced feature analysis. Eur J Cancer 48(4):441–446. https://doi.org/10.1016/j.ejca.2011.11.036

    Article  Google Scholar 

  • Lauritzen AD, Rodríguez-Ruiz A, von Euler-Chelpin MC et al (2022) An artificial intelligence–based mammography screening protocol for breast cancer: outcome and radiologist workload. Radiology 304(1):41–49

    Google Scholar 

  • Lee JY, Lee K-s, Seo BK et al (2022) Radiomic machine learning for predicting prognostic biomarkers and molecular subtypes of breast cancer using tumor heterogeneity and angiogenesis properties on MRI. Eur Radiol 32(1):650–660

    Google Scholar 

  • Leibig C, Brehmer M, Bunk S et al (2022) Combining the strengths of radiologists and AI for breast cancer screening: a retrospective analysis. Lancet Digit Health 4(7):e507–e519

    Google Scholar 

  • Leithner D, Horvat JV, Marino MA et al (2019) Radiomic signatures with contrast-enhanced magnetic resonance imaging for the assessment of breast cancer receptor status and molecular subtypes: initial results. Breast Cancer Res 21(1):106

    Google Scholar 

  • Leithner D, Bernard-Davila B, Martinez DF et al (2020a) Radiomic signatures derived from diffusion-weighted imaging for the assessment of breast cancer receptor status and molecular subtypes. Mol imaging biology 22(2):453–461

    Google Scholar 

  • Leithner D, Mayerhoefer ME, Martinez DF et al (2020b) Non-invasive Assessment of breast Cancer Molecular Subtypes with Multiparametric magnetic resonance imaging Radiomics. J Clin Med 9(6):1853

    Google Scholar 

  • Li H, Zhu Y, Burnside ES et al (2016a) MR imaging radiomics signatures for predicting the risk of breast cancer recurrence as given by research versions of MammaPrint, Oncotype DX, and PAM50 gene assays. Radiology 281(2):382–391

    Google Scholar 

  • Li H, Zhu Y, Burnside ES et al (2016b) Quantitative MRI radiomics in the prediction of molecular classifications of breast cancer subtypes in the TCGA/TCIA data set. NPJ Breast Cancer 2. https://doi.org/10.1038/npjbcancer.2016.12

  • Li H, Mendel KR, Lan L et al (2019a) Digital mammography in breast cancer: additive value of radiomics of breast parenchyma. Radiology 291(1):15–20

    Google Scholar 

  • Li W, Yu K, Feng C et al (2019b) Molecular subtypes recognition of breast Cancer in dynamic contrast-enhanced breast magnetic resonance imaging phenotypes from Radiomics Data. Comput Math Methods Med 2019:6978650. https://doi.org/10.1155/2019/6978650

    Article  MATH  Google Scholar 

  • Li Q, Xiao Q, Li J et al (2021) Value of machine learning with Multiphases CE-MRI radiomics for early prediction of pathological complete response to Neoadjuvant Therapy in HER2-Positive invasive breast Cancer. Cancer Manage Res 13:5053

    Google Scholar 

  • Li Y, Chen Y, Zhao R et al (2022) Development and validation of a nomogram based on pretreatment dynamic contrast-enhanced MRI for the prediction of pathologic response after neoadjuvant chemotherapy for triple-negative breast cancer. Eur Radiol 32(3):1676–1687

    Google Scholar 

  • Lin F, Wang Z, Zhang K et al (2020) Contrast-enhanced spectral mammography-based radiomics nomogram for identifying benign and malignant breast lesions of sub-1 cm. Front Oncol 10:2407

    Google Scholar 

  • Liu C, Ding J, Spuhler K et al (2019a) Preoperative prediction of sentinel lymph node metastasis in breast cancer by radiomic signatures from dynamic contrast-enhanced MRI. J Magn Reson Imaging 49(1):131–140

    Google Scholar 

  • Liu J, Sun D, Chen L et al (2019b) Radiomics analysis of dynamic contrast-enhanced magnetic resonance imaging for the prediction of sentinel lymph node metastasis in breast cancer. Front Oncol 9:980

    Google Scholar 

  • Liu Z, Li Z, Qu J et al (2019c) Radiomics of Multiparametric MRI for pretreatment prediction of pathologic complete response to neoadjuvant chemotherapy in breast Cancer: a Multicenter Study. Clin Cancer Res 25(12):3538–3547. https://doi.org/10.1158/1078-0432.CCR-18-3190

    Article  Google Scholar 

  • Liu M, Mao N, Ma H et al (2020a) Pharmacokinetic parameters and radiomics model based on dynamic contrast enhanced MRI for the preoperative prediction of sentinel lymph node metastasis in breast cancer. Cancer Imaging 20(1):1–8

    Google Scholar 

  • Liu MZ, Mutasa S, Chang P et al (2020b) A novel CNN algorithm for pathological complete response prediction using an I-SPY TRIAL breast MRI database. Magn Reson Imaging 73:148–151

    Google Scholar 

  • Liu Y, Ren L, Cao X et al (2020c) Breast tumors recognition based on edge feature extraction using support vector machine. Biomed Signal Process Control 58:101825

    Google Scholar 

  • Lu Y, Yu Q, Gao Y et al (2018) Identification of metastatic lymph nodes in MR imaging with faster region-based convolutional neural networks. Cancer Res 78(17):5135–5143

    Google Scholar 

  • Luo W-q, Huang Q-x, Huang X-w et al (2019) Predicting breast cancer in breast imaging reporting and data system (BI-RADS) ultrasound category 4 or 5 lesions: a nomogram combining radiomics and BI-RADS. Sci Rep 9(1):1–11

    Google Scholar 

  • Ma W, Zhao Y, Ji Y et al (2019) Breast cancer molecular subtype prediction by mammographic radiomic features. Acad Radiol 26(2):196–201

    Google Scholar 

  • Ma M, Gan L, Liu Y et al (2022) Radiomics features based on automatic segmented MRI images: prognostic biomarkers for triple-negative breast cancer treated with neoadjuvant chemotherapy. Eur J Radiol 146:110095

    Google Scholar 

  • Mann RM, Kuhl CK, Kinkel K et al (2008) Breast MRI: guidelines from the european society of breast imaging. Eur Radiol 18(7):1307–1318. https://doi.org/10.1007/s00330-008-0863-7

    Article  Google Scholar 

  • Mao N, Yin P, Wang Q et al (2019) Added value of radiomics on mammography for breast cancer diagnosis: a feasibility study. J Am Coll Radiol 16(4):485–491

    Google Scholar 

  • Mao N, Yin P, Li Q et al (2020) Radiomics nomogram of contrast-enhanced spectral mammography for prediction of axillary lymph node metastasis in breast cancer: a multicenter study. Eur Radiol 30(12):6732–6739

    Google Scholar 

  • Mao N, Jiao Z, Duan S et al (2021a) Preoperative prediction of histologic grade in invasive breast cancer by using contrast-enhanced spectral mammography-based radiomics. J X-Ray Sci Technology(Preprint):1–10

  • Mao N, Yin P, Zhang H et al (2021b) Mammography-based radiomics for predicting the risk of breast cancer recurrence: a multicenter study. Br J Radiol 94(1127):20210348

    Google Scholar 

  • Marino MA, Pinker K, Leithner D et al (2020) Contrast-enhanced mammography and radiomics analysis for noninvasive breast cancer characterization: initial results. Mol imaging biology 22(3):780–787

    Google Scholar 

  • McGuinness JE, Ro V, Mutasa S et al (2022) Use of a convolutional neural network-based mammographic evaluation to predict breast cancer recurrence among women with hormone receptor-positive operable breast cancer. Breast Cancer Res Treat :1–13

  • McKinney SM, Sieniek M, Godbole V et al (2020) International evaluation of an AI system for breast cancer screening. Nature 577(7788):89–94

    Google Scholar 

  • Montemezzi S, Benetti G, Bisighin MV et al (2021) 3T DCE-MRI Radiomics improves predictive models of complete response to neoadjuvant chemotherapy in breast Cancer. Front Oncol 11:1289

    Google Scholar 

  • Murtaza G, Shuib L, Abdul Wahab AW et al (2020) Deep learning-based breast cancer classification through medical imaging modalities: state of the art and research challenges. Artif Intell Rev 53(3):1655–1720

    Google Scholar 

  • Nederend J, Duijm LE, Voogd AC et al (2012) Trends in incidence and detection of advanced breast cancer at biennial screening mammography in the Netherlands: a population based study. Breast Cancer Res 14(1):R10

    Google Scholar 

  • Nemeth A, Chaudet P, Leporq B et al (2021) Multicontrast MRI-based radiomics for the prediction of pathological complete response to neoadjuvant chemotherapy in patients with early triple negative breast cancer. Magn Reson Mater Phys Biol Med 34(6):833–844

    Google Scholar 

  • Niu S, Jiang W, Zhao N et al (2021) Intra-and peritumoral radiomics on assessment of breast cancer molecular subtypes based on mammography and MRI. J Cancer Res Clin Oncol :1–10

  • Parekh VS, Jacobs MA (2017) Integrated radiomic framework for breast cancer and tumor biology using advanced machine learning and multiparametric MRI. NPJ breast cancer 3(1):1–9

    Google Scholar 

  • Parekh VS, Jacobs MA (2020) Multiparametric radiomics methods for breast cancer tissue characterization using radiological imaging. Breast Cancer Res Treat 180(2):407–421

    Google Scholar 

  • Park H, Lim Y, Ko ES et al (2018) Radiomics signature on magnetic Resonance Imaging: Association with Disease-Free Survival in patients with invasive breast Cancer. Clin Cancer Res 24(19):4705–4714. https://doi.org/10.1158/1078-0432.CCR-17-3783

    Article  Google Scholar 

  • Perre SV, Duron L, Milon A et al (2021) Radiomic analysis of HTR-DCE MR sequences improves diagnostic performance compared to BI-RADS analysis of breast MR lesions. Eur Radiol 31(7):4848–4859

    Google Scholar 

  • Pesapane F, Rotili A, Botta F et al (2021) Radiomics of MRI for the prediction of the pathological response to neoadjuvant chemotherapy in breast cancer patients: a single referral centre analysis. Cancers 13(17):4271

    Google Scholar 

  • Pötsch N, Dietzel M, Kapetas P et al (2021) An AI classifier derived from 4D radiomics of dynamic contrast-enhanced breast MRI data: potential to avoid unnecessary breast biopsies. Eur Radiol 31(8):5866–5876

    Google Scholar 

  • Qiu X, Jiang Y, Zhao Q et al (2020) Could Ultrasound-Based Radiomics noninvasively predict axillary lymph node metastasis in breast Cancer? J Ultrasound Med 39(10):1897–1905

    Google Scholar 

  • Qu YH, Zhu HT, Cao K et al (2020) Prediction of pathological complete response to neoadjuvant chemotherapy in breast cancer using a deep learning (DL) method. Thorac cancer 11(3):651–658

    Google Scholar 

  • Quiaoit K, DiCenzo D, Fatima K et al (2020) Quantitative ultrasound radiomics for therapy response monitoring in patients with locally advanced breast cancer: multi-institutional study results. PLoS ONE 15(7):e0236182

    Google Scholar 

  • Ravichandran K, Braman N, Janowczyk A et al (2018) A deep learning classifier for prediction of pathological complete response to neoadjuvant chemotherapy from baseline breast DCE-MRI. Medical imaging 2018: computer-aided diagnosis. International Society for Optics and Photonics, p 105750 C

  • Reig B, Heacock L, Geras KJ et al (2019) Machine learning in breast MRI. J Magn Reson Imaging. https://doi.org/10.1002/jmri.26852

    Article  Google Scholar 

  • Ren T, Cattell R, Duanmu H et al (2020) Convolutional neural network detection of axillary lymph node metastasis using standard clinical breast MRI. Clin Breast Cancer 20(3):e301–e308

    Google Scholar 

  • Rodriguez-Ruiz A, Lang K, Gubern-Merida A et al (2019) Stand-alone Artificial intelligence for breast Cancer detection in Mammography: comparison with 101 radiologists. J Natl Cancer Inst 111(9):916–922. https://doi.org/10.1093/jnci/djy222

    Article  Google Scholar 

  • Romeo V, Cuocolo R, Apolito R et al (2021) Clinical value of radiomics and machine learning in breast ultrasound: a multicenter study for differential diagnosis of benign and malignant lesions. Eur Radiol 31(12):9511–9519

    Google Scholar 

  • Romero-Martín S, Elías-Cabot E, Raya-Povedano JL et al (2022) Stand-alone use of artificial intelligence for digital mammography and digital breast tomosynthesis screening: a retrospective evaluation. Radiology 302(3):535–542

    Google Scholar 

  • Samiei S, Granzier RW, Ibrahim A et al (2021) Dedicated Axillary MRI-Based Radiomics Analysis for the prediction of Axillary Lymph Node Metastasis in breast Cancer. Cancers 13(4):757

    Google Scholar 

  • Santucci D, Faiella E, Cordelli E et al (2021) 3T MRI-Radiomic Approach to Predict for Lymph Node Status in breast Cancer patients. Cancers 13(9):2228

    Google Scholar 

  • Sechopoulos I, Mann RM (2020) Stand-alone artificial intelligence - the future of breast cancer screening? Breast 49:254–260. https://doi.org/10.1016/j.breast.2019.12.014

    Article  Google Scholar 

  • Sechopoulos I, Teuwen J, Mann R (2020) Artificial intelligence for breast Cancer detection in Mammography and Digital breast tomosynthesis: state of the art. Seminars in Cancer Biology. Elsevier

  • Shen L, Margolies LR, Rothstein JH et al (2019) Deep learning to improve breast cancer detection on screening mammography. Sci Rep 9(1):1–12

    Google Scholar 

  • Shin HK, Kim WH, Kim HJ et al (2021) Prediction of Pathological Complete Response to Neoadjuvant Chemotherapy Using Multi-scale Patch Learning with Mammography. In: International Workshop on PRedictive Intelligence In MEdicine. Springer, pp 192–200

  • Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:14091556

  • Skarping I, Larsson M, Förnvik D (2022) Analysis of mammograms using artificial intelligence to predict response to neoadjuvant chemotherapy in breast cancer patients: proof of concept. Eur Radiol 32:3131–3141

    Google Scholar 

  • Sun Y-S, He Y-J, Li J et al (2016) Predictive value of DCE-MRI for early evaluation of pathological complete response to neoadjuvant chemotherapy in resectable primary breast cancer: a single-center prospective study. The Breast 30:80–86

    Google Scholar 

  • Sun Q, Lin X, Zhao Y et al (2020) Deep learning vs. radiomics for predicting axillary lymph node metastasis of breast cancer using ultrasound images: don’t forget the peritumoral region. Front Oncol 10:53

    Google Scholar 

  • Sun K, Jiao Z, Zhu H et al (2021) Radiomics-based machine learning analysis and characterization of breast lesions with multiparametric diffusion-weighted MR. J translational Med 19(1):1–10

    Google Scholar 

  • Sung H, Ferlay J, Siegel RL et al (2021) Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. Cancer J Clin 71(3):209–249

    Google Scholar 

  • Sutton EJ, Dashevsky BZ, Oh JH et al (2016) Breast cancer molecular subtype classifier that incorporates MRI features. J Magn Reson Imaging 44(1):122–129. https://doi.org/10.1002/jmri.25119

    Article  Google Scholar 

  • Sutton EJ, Onishi N, Fehr DA et al (2020) A machine learning model that classifies breast cancer pathologic complete response on MRI post-neoadjuvant chemotherapy. Breast Cancer Res 22:1–11

    Google Scholar 

  • Szegedy C, Liu W, Jia Y et al (2015) Going deeper with convolutions. In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp 1–9

  • Szegedy C, Vanhoucke V, Ioffe S et al (2016) Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp 2818–2826

  • Tahmassebi A, Wengert GJ, Helbich TH et al (2019) Impact of machine learning with multiparametric magnetic resonance imaging of the breast for early prediction of response to neoadjuvant chemotherapy and survival outcomes in breast cancer patients. Invest Radiol 54(2):110

    Google Scholar 

  • Tan H, Gan F, Wu Y et al (2020a) Preoperative prediction of axillary lymph node metastasis in breast carcinoma using radiomics features based on the fat-suppressed T2 sequence. Acad Radiol 27(9):1217–1225

    Google Scholar 

  • Tan H, Wu Y, Bao F et al (2020b) Mammography-based radiomics nomogram: a potential biomarker to predict axillary lymph node metastasis in breast cancer. Br J Radiol 93(1111):20191019

    Google Scholar 

  • Taylor-Phillips S, Seedat F, Kijauskaite G et al (2022) UK National Screening Committee’s approach to reviewing evidence on artificial intelligence in breast cancer screening. Lancet Digit Health 4(7):e558–e565

    Google Scholar 

  • Thompson A, Moulder-Thompson S (2012) Neoadjuvant treatment of breast cancer. Ann Oncol 23:x231–x236

    Google Scholar 

  • Truhn D, Schrading S, Haarburger C et al (2019) Radiomic versus convolutional neural networks analysis for classification of contrast-enhancing lesions at multiparametric breast MRI. Radiology 290(2):290–297

    Google Scholar 

  • Valdora F, Houssami N, Rossi F et al (2018) Rapid review: radiomics and breast cancer. Breast Cancer Res Treat 169(2):217–229. https://doi.org/10.1007/s10549-018-4675-4

    Article  Google Scholar 

  • Vieceli M, Van Dusen A, Drukker K et al (2020) Case-based repeatability of machine learning classification performance on breast MRI. Medical imaging 2020: computer-aided diagnosis. International Society for Optics and Photonics, p 1131421

  • Wang Q, Mao N, Liu M et al (2021a) Radiomic analysis on magnetic resonance diffusion weighted image in distinguishing triple-negative breast cancer from other subtypes: a feasibility study. Clin Imaging 72:136–141

    Google Scholar 

  • Wang S, Mao N, Duan S et al (2021b) Radiomic Analysis of Contrast-Enhanced Mammography With Different Image Types: Classification of Breast Lesions. Frontiers in oncology 11

  • Wang S, Sun Y, Mao N et al (2021c) Incorporating the clinical and radiomics features of contrast-enhanced mammography to classify breast lesions: a retrospective study. Quant Imaging Med Surg 11(10):4418

    Google Scholar 

  • Wang S, Sun Y, Li R et al (2022) Diagnostic performance of perilesional radiomics analysis of contrast-enhanced mammography for the differentiation of benign and malignant breast lesions. Eur Radiol 32(1):639–649

    Google Scholar 

  • Weber RJ, van Bommel RM, Louwman MW et al (2016) Characteristics and prognosis of interval cancers after biennial screen-film or full-field digital screening mammography. Breast Cancer Res Treat 158(3):471–483

    Google Scholar 

  • Wu J, Sun X, Wang J et al (2017) Identifying relations between imaging phenotypes and molecular subtypes of breast cancer: Model discovery and external validation. J Magn Reson Imaging 46(4):1017–1027. https://doi.org/10.1002/jmri.25661

    Article  Google Scholar 

  • Wu J, Cao G, Sun X et al (2018) Intratumoral spatial heterogeneity at perfusion MR imaging predicts recurrence-free survival in locally advanced breast cancer treated with neoadjuvant chemotherapy. Radiology 288(1):26–35

    Google Scholar 

  • Xiong L, Chen H, Tang X et al (2021) Ultrasound-based Radiomics Analysis for Predicting Disease-Free survival of invasive breast Cancer. Frontiers in oncology 11

  • Yala A, Lehman C, Schuster T et al (2019) A deep learning mammography-based model for improved breast cancer risk prediction. Radiology 292(1):60–66

    Google Scholar 

  • Yala A, Mikhael PG, Strand F et al (2021a) Multi-institutional validation of a mammography-based breast cancer risk model. J Clin Oncology:JCO. 21.01337

  • Yala A, Mikhael PG, Strand F et al (2021b) Toward robust mammography-based models for breast cancer risk. Sci Transl Med 13(578)

  • Yala A, Mikhael PG, Lehman C et al (2022) Optimizing risk-based breast cancer screening policies with reinforcement learning. Nat Med :1–8

  • Yang J, Wang T, Yang L et al (2019) Preoperative prediction of axillary lymph node metastasis in breast cancer using mammography-based radiomics method. Sci Rep 9(1):1–11

    Google Scholar 

  • Yassin NI, Omran S, El Houby EM et al (2018) Machine learning techniques for breast cancer computer aided diagnosis using different image modalities: a systematic review. Comput Methods Programs Biomed 156:25–45

    Google Scholar 

  • Youk JH, Kwak JY, Lee E et al (2020) Grayscale ultrasound radiomic features and shear-wave elastography radiomic features in benign and malignant breast masses. Ultraschall in der Medizin-European Journal of Ultrasound 41(04):390–396

    Google Scholar 

  • Yu F-H, Wang J-X, Ye X-H et al (2019) Ultrasound-based radiomics nomogram: a potential biomarker to predict axillary lymph node metastasis in early-stage invasive breast cancer. Eur J Radiol 119:108658

    Google Scholar 

  • Yu H, Meng X, Chen H et al (2020a) Correlation between Mammographic Radiomics features and the level of Tumor-Infiltrating lymphocytes in patients with triple-negative breast Cancer. Frontiers in Oncology 10

  • Yu Y, Tan Y, Xie C et al (2020b) Development and validation of a preoperative magnetic resonance imaging radiomics–based signature to predict axillary lymph node metastasis and disease-free survival in patients with early-stage breast cancer. JAMA Netw open 3(12):e2028086–e2028086

    Google Scholar 

  • Yu F, Hang J, Deng J et al (2021a) Radiomics features on ultrasound imaging for the prediction of disease-free survival in triple negative breast cancer: a multi-institutional study. Br J Radiol 94(1126):20210188

    Google Scholar 

  • Yu Y, He Z, Ouyang J et al (2021b) Magnetic resonance imaging radiomics predicts preoperative axillary lymph node metastasis to support surgical decisions and is associated with tumor microenvironment in invasive breast cancer: a machine learning, multicenter study. EBioMedicine 69:103460

    Google Scholar 

  • Zhang Q, Xiao Y, Suo J et al (2017) Sonoelastomics for breast tumor classification: a radiomics approach with clustering-based feature selection on sonoelastography. Ultrasound Med Biol 43(5):1058–1069

    Google Scholar 

  • Zhang Q, Peng Y, Liu W et al (2020a) Radiomics based on multimodal MRI for the differential diagnosis of benign and malignant breast lesions. J Magn Reson Imaging 52(2):596–607

    Google Scholar 

  • Zhang X, Liang M, Yang Z et al (2020b) Deep learning-based radiomics of b-mode ultrasonography and shear-wave elastography: improved performance in breast mass classification. Front Oncol 10:1621

    Google Scholar 

  • Zhang X, Liang C, Zeng D et al (2021a) Pattern classification for breast lesion on FFDM by integration of radiomics and deep features. Comput Med Imaging Graph 90:101922

    Google Scholar 

  • Zhang X, Yang Z, Cui W et al (2021b) Preoperative prediction of axillary sentinel lymph node burden with multiparametric MRI-based radiomics nomogram in early-stage breast cancer. Eur Radiol 31(8):5924–5939

    Google Scholar 

  • Zhang Y, Chen J-H, Lin Y et al (2021c) Prediction of breast cancer molecular subtypes on DCE-MRI using convolutional neural network with transfer learning between two centers. Eur Radiol 31(4):2559–2567

    Google Scholar 

  • Zhao R, Lu H, Li Y-B et al (2021) Nomogram for Early Prediction of Pathological Complete Response to Neoadjuvant Chemotherapy in Breast Cancer Using Dynamic Contrast-enhanced and Diffusion-weighted MRI. Academic Radiology

  • Zheng X, Yao Z, Huang Y et al (2020) Deep learning radiomics can predict axillary lymph node status in early-stage breast cancer. Nat Commun 11(1):1–9

    Google Scholar 

  • Zhou Y, Xu J, Liu Q et al (2018) A radiomics approach with CNN for shear-wave elastography breast tumor classification. IEEE Trans Biomed Eng 65(9):1935–1942

    Google Scholar 

  • Zhou J, Luo LY, Dou Q et al (2019) Weakly supervised 3D deep learning for breast cancer classification and localization of the lesions in MR images. J Magn Reson Imaging 50(4):1144–1151

    Google Scholar 

  • Zhou J, Lu J, Gao C et al (2020a) Predicting the response to neoadjuvant chemotherapy for breast cancer: wavelet transforming radiomics in MRI. BMC Cancer 20(1):1–10

    Google Scholar 

  • Zhou J, Zhang Y, Chang KT et al (2020b) Diagnosis of benign and malignant breast lesions on DCE-MRI by using radiomics and deep learning with consideration of peritumor tissue. J Magn Reson Imaging 51(3):798–809

    Google Scholar 

  • Zhou L-Q, Wu X-L, Huang S-Y et al (2020c) Lymph node metastasis prediction from primary breast cancer US images using deep learning. Radiology 294(1):19–28

    Google Scholar 

  • Zhou J, Tan H, Li W et al (2021) Radiomics signatures based on multiparametric MRI for the preoperative prediction of the her2 status of patients with breast cancer. Acad Radiol 28(10):1352–1360

    Google Scholar 

Download references

Acknowledgements

The authors thank to the support from the Oversea Study Program of Guangzhou Elite Project.

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Contributions

T. Z., R. S., Y. G., X. W., and L. H. collected the articles; T. Z., T. T., R. S., Y. G., X. W., L. H., Q. Y. and R. M. M. analyzed the articles; R. M. M. and R. G. H. B. T. provided project administration and resources; T. Z. wrote the main manuscript text, T. T. and R. M. M. revised it. All authors approved the final version of this article.

Corresponding author

Correspondence to Tao Tan.

Ethics declarations

Ethics approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of Interest

The authors declare no competing interests.

Informed consent

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, T., Tan, T., Samperna, R. et al. Radiomics and artificial intelligence in breast imaging: a survey. Artif Intell Rev 56 (Suppl 1), 857–892 (2023). https://doi.org/10.1007/s10462-023-10543-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10462-023-10543-y

Keywords

Navigation