We introduce a simple and practical method for repairing inconsistent databases. Given a possibly inconsistent database, the idea is to properly represent the underlying problem, i.e., to describe the possible ways of restoring its consistency. We do so by what we call signed formulae, and show how the ‘signed theory’ that is obtained can be used by a variety of off-the-shelf computational models in order to compute the corresponding solutions, i.e., consistent repairs of the database.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
C.E. Alchourrón, P. Gärdenfors and D. Makinson, On the logic of theory change: Partial meet contraction and revision function, Journal of Symbolic Logic 50 (1985) 510–530.
J.J. Alferes, J.A. Leite, L.M. Pereira and P. Quaresma, Planning as abductive updating, in: Proc. of the Symposium on AI Planning and Intelligent Agents (AISB'00) (2000) pp. 1–8.
J.J. Alferes, L.M. Pereira, H. Przymusinska and T.C. Przymusinski, LUPS – A language for updating logic programs, Artificial Intelligence 138(1–2) (2002) 87–116.
M. Arenas, L. Bertossi and J. Chomicki, Consistent query answers in inconsistent databases, in: Proc. 18th ACM Symp. on Principles of Database Systems (PODS'99) (1999) pp. 68–79.
M. Arenas, L. Bertossi and J. Chomicki, Answer sets for consistent query answering in inconsistent databases, Theory and Practice of Logic Programming 3(4–5) (2003) 393–424.
O. Arieli, Paraconsistent preferential reasoning by signed quantified Boolean formulae, in: Proc. 16th European Conference on Artificial Intelligence (ECAI'04), eds. R. López de Mántaras and L. Saitta (IOS, 2004) pp. 773–777.
O. Arieli and M. Denecker, Modeling paraconsistent reasoning by classical logic, in: Proc. 2nd Symp. on Foundations of Information and Knowledge Systems (FoIKS'02), eds. T. Eiter and K.D. Schewe, LNCS 2284 (Springer, 2002) pp. 1–14.
O. Arieli and M. Denecker, Reducing preferential paraconsistent reasoning to classical entailment, Journal of Logic and Computation 13(4) (2003) 557–580.
O. Arieli, M. Denecker, B. Van Nuffelen and M. Bruynooghe, Database repair by signed formulae, in: Proc. 3rd International Symposium on Foundations of Information and Knowledge Systems (FoIKS'04), eds. D. Seipel and J.M. Turull Torres, LNCS 2942 (Springer, 2004) pp. 14–30.
O. Arieli, M. Denecker, B. Van Nuffelen and M. Bruynooghe, Coherent integration of databases by abductive logic programming, Journal of Artificial Intelligence Research 21 (2004) 245–286.
O. Arieli, B. Van Nuffelen, M. Denecker and M. Bruynooghe, Coherent composition of distributed knowledge-bases through abduction, in: Proc. 8th Int. Conf. on Logic Programming, Artificial Intelligence and Reasoning (LPAR'01), eds. A. Nieuwenhuis and A. Voronkov, LNCS 2250 (Springer, 2001) pp. 620–635.
A. Ayari and D. Basin, QUBOS: Deciding quantified Boolean logic using propositional satisfiability solvers, in: Proc. 4th Int. Conf. on Formal Methods in Computer-Aided Design (FMCAD'02), eds. M.D. Aagaard and J.W. O'Leary, LNCS 2517 (Springer, 2002) pp. 187–201.
C. Baral, S. Kraus and J. Minker, Combining multiple knowledge bases, IEEE Transactions on Knowledge and Data Engineering 3(2) (1991) 208–220.
C. Baral, S. Kraus, J. Minker and V.S. Subrahmanain, Combining multiple knowledge bases consisting of first order theories, Computational Intelligence 8 (1992) 45–71.
C. Batini, M. Lenzerini and B.B. Navathe, A comparative analysis of methodologies for database schema integration, ACM Computing Surveys 18(4) (1986) 323–364.
S. Benferhat, D. Dubois, S. Kaci and H. Prade, Possibilistic merging and distance-based fusion of propositional information, Annals of Mathematics and Artificial Intelligence 34(1–3) (2002) 217–252.
L. Bertossi, J. Chomicki, A. Cortés and C. Gutierrez, Consistent answers from integrated data sources, in: Proc. Flexible Query Answering Systems (FQAS'2002), eds. A. Andreasen et al., LNCS 2522 (Springer, 2002) pp. 71–85.
L. Bertossi and C. Schwind, Analytic tableau and database repairs: Foundations, in: Proc. 2nd Int. Symp. on Foundations of Information and Knowledge Systems (FoIKS'02), eds. T. Eiter and K.D. Schewe, LNCS 2284 (Springer, 2002) pp. 32–48.
P. Besnard and T. Schaub, Signed systems for paraconsistent reasoning, Journal of Automated Reasoning 20(1) (1998) 191–213.
P. Besnard, T. Schaub, H. Tompits and S. Woltran, Paraconsistent reasoning via quantified Boolean formulas, part I: Axiomatizing signed systems, in: Proc. 8th European Conf. on Logics in Artificial Intelligence (JELIA'02), eds. S. Flesca et al., LNAI 2424 (Springer, 2002) pp. 320–331.
P. Besnard, T. Schaub, H. Tompits and S. Woltran, Paraconsistent reasoning via quantified Boolean formulas, part II: Circumscribing inconsistent theories, in: Proc. 7th European Conf. on Symbolic and Quantitative Approaches to Reasoning with Uncertainty (ECSQARU'03), eds. T.D. Nielsen and N.L. Zhang, LNAI 2711 (Springer, 2003) pp. 528–539.
M. Cadoli, M. Schaerf, A. Giovanardi and M. Giovanardi, An Algorithm to evaluate quantified Boolean formulae and its experimental evaluation, Automated Reasoning 28(2) (2002) 101–142.
M. Carlsson, G. Ottosson and B. Carlson, An open-ended finite domain constraint solver, in: Proc. 9th Int. Symp. on Programming Languages, Implementations, Logics, and Programs (PLILP'97), LNCS 1292 (Springer, 1997) pp. 191–206.
S.H. Nienhuys–Cheng, Distance between Herbrand interpretations: A measure for approximations to a target concept, in: Proc. 7th Int. Workshop on Inductive Logic Programming (ILP'97), LNCS 1297 (Springer, 1997) pp. 213–226.
M. Dalal, Investigations into a theory of knowledge base revision, in: Proc. National Conference on Artificial Intelligence (AAAI'98) (AAAI Press, 1988) pp. 475–479.
A. Darwiche and J. Pearl, On the logic of iterated belief revision, Artificial Intelligence 89 (1997) 1–29.
S. de Amo, W. Carnielli and J. Marcos, A logical framework for integrating inconsistent information in multiple databases, in: Proc. 2nd Int. Symp. on Foundations of Information and Knowledge Systems (FoIKS'02), eds. T. Eiter and K.D. Schewe, LNCS 2284 (Springer, 2002) pp. 67–84.
J. Delgrande and T. Schaub, Two approaches to merging knowledge bases, in: Proc. 9th European Conference on Logic in Artificial Intelligence (JELIA'04), LNCS 3229 (Springer, 2004) pp. 426–438.
J. Delgrande, T. Schaub, H. Tompits and S. Woltran, On computing belief change operations using quantified Boolean formulas, Journal of Logic and Computation 14(6) (2004) 801–826.
U. Egly, T. Eiter, H. Tompits and S. Woltran, Solving advanced reasoning tasks using quantified Boolean formulas, in: Proc. National Conf. on Artificial Intelligence (AAAI'00) (AAAI, 2000) pp. 417–422.
T. Eiter, N. Leone, C. Mateis, G. Pfeifer and F. Scarcello, The KR system dlv: Progress report, comparisons and benchmarks, in: Proc. 6th Int. Conf. on Principles of Knowledge Representation and Reasoning (KR'98) (Morgan Kaufmann, 1998) pp. 406–417.
R. Feldmann, B. Monien and S. Schamberger, A distributed algorithm to evaluate quantified Boolean formulae, in: Proc. National Conf. on Artificial Intelligence (AAAI'00) (AAAI, 2000) pp. 285–290.
E. Franconi, A.L. Palma, N. Leone, D. Perri and F. Scarcello, Census data repair: A challenging application of disjunctive logic programming, in: Proc. 8th Internations Conference on Logic Programming, Artificial Intelligence and Reasoning (LPAR'01), eds. A. Nieuwenhuis and A. Voronkov, LNCS 2250 (Springer, 2001) pp. 561–578.
D. Gabbay, O. Rodrigues and A. Russo, Revision by translation, in: Information, Uncertainty, and Fusion, eds. B. Bouchon-Meunier, R.R. Yager and L. Zadeh (Kluwer, 2000) pp. 3–32.
E. Giunchiglia, M. Narizzano and A. Tacchella, QuBE: A system for deciding quantified Boolean formulas satisfiability, in: Proc. 1st Int. Conf. on Automated Reasoning (IJCAR'01), eds. R. Gor, A. Leitsch and T. Nipkow, LNCS 2083 (Springer, 2001) pp. 364–369.
G. Greco, S. Greco and E. Zumpano, A logic programming approach to the integration, repairing and querying of inconsistent databases, in: Proc. 17th Int. Conf. on Logic Programming (ICLP'01), LNCS 2237 (Springer, 2001) pp. 348–363.
S. Greco and E. Zumpano, Querying inconsistent databases, in: Proc. Int. Conf. on Logic Programming and Automated Reasoning (LPAR'2000), eds. M. Parigot and A. Voronkov, LNAI 1955 (Springer, 2000) pp. 308–325.
H. Katsuno and A.O. Mendelzon. Propositional knowledge base revision and minimal change, Artificial Intelligence 52 (1991) 263–294.
G. Kern-Isberner, The principle of conditional preservation in belief revision, in: Proc. 2nd Symp. on Foundations of Information and Knowledge Systems (FoIKS'02), eds. T. Eiter and K.D. Schewe, LNCS 2284 (Springer, 2002) pp. 105–129.
G. Kern-Isberner, A thorough axiomatization of a principle of conditional preservation in belief revision, Annals of Mathematics and Artificial Intelligence 40(1–2) (2004) 127–164.
H. Kleine-Büning, M. Karpinski and A. Fögel, Resolution for quantified Boolean formulas, Journal of Information and Computation 177(1) (1995) 12–18.
S. Konieczny and R. Pino Pérez, Merging information under constraints: A logical framework, Journal of Logic and Computation 12(5) (2002) 773–808.
R. Letz, Lemma and model caching in decision procedures for quantified Boolean formulas, in: Proc. TABLEAUX'2002, eds. U. Egly and G.C. Fermüler, LNAI 2381 (Springer, 2002) pp. 160–175.
P. Liberatore and M. Schaerf, Arbitration (or how to merge knowledge bases), IEEE Transactions on Knowledge and Data Engineering 10 (1998) 76–90.
P. Liberatore and M. Schaerf, BReLS: A system for the integration of knowledge bases, in: Proc Int. Conf. on Principles of Knowledge Representation and Reasoning (KR'2000) (Morgan Kaufmann, 2000) pp. 145–152.
J. Lin, Integration of weighted knowledge bases, Artificial Intelligence 83 (1996) 363–378.
J. Lin and A.O. Mendelzon, Merging databases under constraints International Journal of Cooperative Information Systems 7(1) (1998) 55–76.
C.A. Mareco and L. Bertossi, Specification and implementation of temporal databases in a bitemporal event calculus, in: Advance in Conceptual Modeling, LNCS 1727 (Springer, 1999) pp. 74–85.
J. McCarthy, Applications of circumscription to formalizing common-sense knowledge, Artificial Intelligence 28 (1986) 89–116.
M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang and S. Malik, Chaff: Engineering an efficient SAT solver, in: Proc. 39th Design Automation Conference (DAC'01) (2001) pp. 530–535.
E. Rahm and P.A. Bernstein. A survey of approaches to automatic schema matching, VLDB Journal 10(4) (2001) 334–350.
J. Ramon and M. Bruynooghe, A polynomial time computable metric between point sets, Acta Informatica 37(10) (2001) 765–780.
R. Reiter, On closed world databases, in: Logic and Databases, eds. H. Gallaire and J. Minker (Plenum, 1978) pp. 55–76.
J.T. Rintanen, Improvements of the evaluation of quantified Boolean formulae, in: Proc. 16th Int. Joint Conf. on Artificial Intelligence (IJCAI'99) (Morgan Kaufmann, 1999) pp. 1192–1197.
C. Sakama and K. Inou, An abductive framework for computing knowledge base updates, Theory and Practice of Logic Programming 3(6) (2003) 671–715.
S.M. Sripada, Efficient implementation of the event calculus for temporal database applications, in: Proc. Int. Conf. on Logic Programming (ICLP'95) (1995) pp. 99–113.
V.S. Subrahmanian, Amalgamating knowledge-bases, ACM Transactions on Database Systems 19(2) (1994) 291–331.
J. Ullman, Information integration using logical views, Theoretical Computer Science 239(2) (2000) 189–210.
B. Van Nuffelen, A. Cortés-Calabuig, M. Denecker, O. Arieli and M. Bruynooghe, Data integration using ID-logic, in: Proc. 16th Int. Conf. on Advanced Information Systems Engineering (CAiSE'04), LNCS 3084 (Springer, 2004) pp. 67–81.
C. Wrathall, Complete sets and the polynomial-time hierarchy, Theoretical Computer Science 3(1) (1976) 23–33.
Author information
Authors and Affiliations
Corresponding author
Additional information
*This paper is a revised and extended version of [9].
Rights and permissions
About this article
Cite this article
Arieli, O., Denecker, M., Van Nuffelen, B. et al. Computational methods for database repair by signed formulae*. Ann Math Artif Intell 46, 4–37 (2006). https://doi.org/10.1007/s10472-005-9012-z
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10472-005-9012-z