Skip to main content
Log in

Possibilistic uncertainty handling for answer set programming

  • Published:
Annals of Mathematics and Artificial Intelligence Aims and scope Submit manuscript

Abstract

In this work, we introduce a new framework able to deal with a reasoning that is at the same time non monotonic and uncertain. In order to take into account a certainty level associated to each piece of knowledge, we use possibility theory to extend the non monotonic semantics of stable models for logic programs with default negation. By means of a possibility distribution we define a clear semantics of such programs by introducing what is a possibilistic stable model. We also propose a syntactic process based on a fix-point operator to compute these particular models representing the deductions of the program and their certainty. Then, we show how this introduction of a certainty level on each rule of a program can be used in order to restore its consistency in case of the program has no model at all. Furthermore, we explain how we can compute possibilistic stable models by using available softwares for Answer Set Programming and we describe the main lines of the system that we have developed to achieve this goal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alsinet, T., Godo, L.: A complete calculus for possibilistic logic programming with fuzzy propositional variables. In: Boutilier, C., Goldszmidt, M. (eds.), Conference in Uncertainty in Artificial Intelligence, pp. 1–10. Stanford University, Stanford, California, USA. Morgan Kaufmann, San Francisco, California (2000)

    Google Scholar 

  2. Anger, C., Gebser, M., Linke, T., Neumann, A., Schaub, T.: The nomore++ system. In: Baral, C., Greco, G., Leone, N., Terracina, G. (eds.), Proceedings of the 8th International Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR’05), volume 3662 of Lecture Notes in Artificial Intelligence, pp. 422–426. Springer, Berlin Heidelberg New York (2005)

    Chapter  Google Scholar 

  3. Baral, C., Gelfond, M.: Logic programming and knowledge representation. J. Log. Program. 19/20, 73–148 (1994)

    Article  MathSciNet  Google Scholar 

  4. Baral, C., Gelfond, M., Rushton, N.J.: Probabilistic reasoning with answer sets. In: Lifschitz, V., Niemelä, I. (eds.), Proceedings of the 7th International Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR’04), volume 2923 of LNCS, pp. 21–33. Fort Lauderdale, FL, USA. Springer, Berlin Heidelberg New York (2004)

    Google Scholar 

  5. Benferhat, S., Dubois, D., Prade, H.: Representing default rules in possibilistic logic. In: International Conference on the Principles of Knowledge Representation and Reasoning, pp. 673–684 (1992)

  6. Benferhat, S., Dubois, D., Prade, H.: Possibilistic logic: From nonmonotonicity to logic programming. In: Clarke, M., Kruse, R., Moral, S. (eds.), European Conference on Symbolic and Quantitative Approaches to Reasoning with Uncertainty volume 747 of LNCS, pp. 17–24. Springer, Berlin Heidelberg New York (1993)

    Chapter  Google Scholar 

  7. Bidoit, N., Froidevaux, C.: General logical databases and programs: Default logic semantics and stratification. Inf. Comput. 91(1), 15–54 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  8. Brewka, G.: Preferred subtheories: An extended logical framework for default reasoning. In: International Joint Conference on Artificial Intelligence, pp. 1043–1048 (1989)

  9. Brewka, G.: Complex preferences for answer set optimization. In: Dubois, D., Welty, C.A., Williams, M.A. (eds.), International Conference on the Principles of Knowledge Representation and Reasoning, pp. 213–223 (2004)

  10. Brewka, G., Eiter, T.: Preferred answer sets for extended logic programs. Artif. Intell. 109(1–2), 297–356 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  11. Chatalic, P., Froidevaux, C., Schwind, C.: Graded hypothesis theories. Theor. Comp. Sci. 171(1–2), 247–280 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  12. Damasio, C.V., Pereira, L.M.: Antitonic logic programs. In: Eiter, T., Faber, W., Truszczynski, M. (eds.), International Conference on Logic Programming and NonMonotonic Reasoning, volume 2173 of LNCS, pp. 379–392. Springer, Berlin Heidelberg New York (2001)

    Google Scholar 

  13. Damasio, C.V., Pereira, L.M.: Monotonic and residuated logic programs. In: Benferhat, S., Besnard, P. (eds.) European Conference on Symbolic and Quantitative Approaches to Reasoning with Uncertainty, volume 2143 of LNCS, pp. 748–759. Springer, Berlin Heidelberg New York (2001)

    Google Scholar 

  14. Dupin de Saint-Cyr, F., Prade, H.: Describing evolving systems by uncertain default transition rules. In: International Conference in Advances in Intelligent Systems – Theory and Applications (AISTA’04), Luxembourg (2004)

  15. Delgrande, J., Schaub, T., Tompits, H., Wang, K.: A classification and survey of preference handling approaches in nonmonotonic reasoning. Comput. Intell. 20(2), 308–334 (2004)

    Article  MathSciNet  Google Scholar 

  16. Dowling, W., Gallier, J.: Linear-time algorithms for testing the satisfiability of propositional horn formulae. J. Log. Program. 1, 267–284 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  17. Dubois, D., Lang, J., Prade, H.: Towards possibilistic logic programming. In: Furukawa, K. (ed.) International Conference on Logic Programming, pp. 581–595. MIT Press, Cambridge, Massachusetts (1991)

    Google Scholar 

  18. Dubois, D., Lang, J., Prade, H.: Possibilistic logic. In: Gabbay, D., Hogger, C., Robinson, J. (eds.), Handbook of Logic in Artificial Intelligence and Logic Programming, vol. 3, pp. 439–513. Oxford University Press, Oxford (1995)

    Google Scholar 

  19. Dubois, D., Prade, H.: Possibility Theory – An Approach to Computerized Processing of Uncertainty. Plenum Press, New-York (1988)

    Google Scholar 

  20. Dubois, D., Prade, H.: Possibility theory: qualitative and quantitative aspects. In: Smets, Ph. (ed.), Handbook of Defeasible Reasoning and Uncertainty Management Systems, vol. 1, pp. 169–226. Kluwer Academic Press, Dordrecht (1998)

    Google Scholar 

  21. Dubois, D., Prade, H.: Possibility theory, probability theory and multiple-valued logics: A clarification. Ann. Math. Artif. Intell. 32, 35–66 (2001)

    Article  MathSciNet  Google Scholar 

  22. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: Kowalski, R.A., Bowen, K. (eds.), International Conference on Logic Programming, pp. 1070–1080. The MIT Press, Cambridge, Massacusetts (1988)

    Google Scholar 

  23. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive databases. New. Gener. Comput. 9(3–4), 363–385 (1991)

    Google Scholar 

  24. Jampel, M., Freuder, E.C., Maher, M.J. (eds.), Over-Constrained Systems, volume 1106 of LNCS. Springer, Berlin Heidelberg New York (1996)

    Google Scholar 

  25. Kraus, S., Lehmann, D., Magidor, M.: Nonmonotonic reasoning, preferential models and cumulative logics. Artif. Intell. 44(1–2), 167–208 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  26. Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.: The dlv system for knowledge representation and reasoning. ACM Trans. Comput. Log. 7(3), (July 2006)

  27. Lierler, Y., Maratea, M.: Cmodels-2: Sat-based answer set solver enhanced to non-tight programs. In: International Conference on Logic Programming and NonMonotonic Reasoning, volume 2923 of LNCS, pp. 346–350. Springer, Berlin Heidelberg New York (2004)

    Google Scholar 

  28. Lloyd, J.: Foundations of Logic Programming. Symbolic Computation, 2nd edition. Springer, Berlin Heidelberg New York (1987)

    Google Scholar 

  29. Loyer, Y., Straccia, U.: Default knowledge in logic programs with uncertainty. In: International Conference on Logic Programming, volume 2916 of LNCS, pp. 466–480, Mumbai, India. Springer, Berlin Heidelberg New York (2003)

    Google Scholar 

  30. Lukasiewicz, T.: Many-valued disjunctive logic programs with probabilistic semantics. In: Gelfond, M., Leone, N., Pfeifer, G. (eds.) Proceedings of the 5th International Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR’99), volume 1730 of LNCS, pp. 277–289, El Paso, Texas, USA. Springer, Berlin Heidelberg New York (1999)

    Google Scholar 

  31. Lukasiewicz, T.: Fixpoint characterizations for many-valued disjunctive logic programs with probabilistic semantics. In: Eiter, T., Faber, W., Truszczynski, M. (eds.), Proceedings of the 6th International Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR’01), volume 2173 of LNCS, pp. 336–350, Vienna, Austria. Springer, Berlin Heidelberg New York (2001)

    Google Scholar 

  32. Lukasiewicz, T.: Weak nonmonotonic probabilistic logics. Artif. Intell. 168(1–2), 119–161 (2005)

    Article  MathSciNet  Google Scholar 

  33. Marek, W., Truszczyński, M.: Autoepistemic logic. J. ACM 38(3), 588–619 (1991)

    Article  MATH  Google Scholar 

  34. Mateis, C.: Extending disjunctive logic programming by t-norms. In: Gelfond, M., Leone, N., Pfeifer, G. (eds.) LPNMR, volume 1730 of LNCS, pp. 290–304. Springer, Berlin Heidelberg New York (1999)

    Google Scholar 

  35. Nerode, A., Remmel, J.B., Subrahmanian, V.S.: Annotated nonmonotonic rule systems. Theor. Comp. Sci. 171(1–2), 111–146 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  36. Nicolas, P., Garcia, L., Stéphan, I.: A possibilistic inconsistency handling in answer set programming. In: European Conference on Symbolic and Quantitative Approaches to Reasoning with Uncertainty, volume 3571 of LNCS, pp. 402–414, Barcelona, Spain. Springer, Berlin Heidelberg New York (2005)

    Google Scholar 

  37. Nicolas, P., Garcia, L., Stéphan, I.: Possibilistic stable models. In: International Joint Conference on Artificial Intelligence, pp. 248–253, Edinburgh, Scotland, August 2–5 (2005)

  38. Nicolas, P., Lefèvre, C.: Possibilistic stable model computing. In: ASP’05 workshop, Bath, England (2005)

    Google Scholar 

  39. Niemelä, I.: Logic programs with stable model semantics as a constraint programming paradigm. Ann. Math. Artif. Intell. 25(3–4), 241–273 (1999)

    Article  MATH  Google Scholar 

  40. Pearl, J.: System Z: A natural ordering of defaults with tractable applications to default reasoning. In: Parikh, R. (ed.) Proceedings of Theoretical Aspects of Reasoning about Knowledge, pp. 121–135. Morgan Kaufmann Publishers, San Mateo (1990)

    Google Scholar 

  41. Reiter, R.: A logic for default reasoning. Artif. Intell. 13(1–2), 81–132 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  42. Saad, E., Pontelli, E.: Hybrid probabilistic logic programs with non-monotonic negation. In: Logic Programming, 21st International Conference, (ICLP’05), volume 3668 of LNCS, pp. 204–220, Sitges, Spain. Springer, Berlin Heidelberg New York (2005)

    Google Scholar 

  43. Schwind, C.: A tableaux-based theorem prover for a decidable subset of default logic. In: Stickel, M. (ed.) Conference on Automated Deduction. Springer, Berlin Heidelberg New York (1990)

    Google Scholar 

  44. Simons, P.: Extending and implementing the stable model semantics. Research Report A58, Helsinki University of Technology, Department of Computer Science and Engineering, Laboratory for Theoretical Computer Science, Espoo, Finland, April 2000. Doctoral dissertation

  45. Syrjänen, T., Niemelä, I.: The Smodels systems. In: International Conference on Logic Programming and NonMonotonic Reasoning, pp. 434–438, Vienna, Austria, September. Springer-Verlag, Berlin Heidelberg New York (2001)

    Google Scholar 

  46. Wagner, G.: A logical reconstruction of fuzzy inference in databases and logic programs. In: Intelligent Fuzzy Set Association World Congress, Prague, Czech (1997)

  47. Wilson, M., Borning, A.: Hierarchical constraint logic programming. J. Log. Program. 16(3), 277–318 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  48. Yager, R.R.: An introduction to applications of possibility theory. Human Syst. Manag. 3, 246–269 (1983)

    Google Scholar 

  49. Zadeh, L.A.: Fuzzy sets as a basis for a theory of possibility. In: Fuzzy Sets and Systems, vol. 1, pp. 3–28. Elsevier Science, Amsterdam (1978)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pascal Nicolas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nicolas, P., Garcia, L., Stéphan, I. et al. Possibilistic uncertainty handling for answer set programming. Ann Math Artif Intell 47, 139–181 (2006). https://doi.org/10.1007/s10472-006-9029-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10472-006-9029-y

Keywords

PACS

Navigation