Skip to main content
Log in

A geometric approach to deploying robot swarms

  • Published:
Annals of Mathematics and Artificial Intelligence Aims and scope Submit manuscript

Abstract

We discuss the fundamental problems and practical issues underlying the deployment of a swarm of autonomous mobile robots that can potentially be used to build mobile robotic sensor networks. For the purpose, a geometric approach is proposed that allows robots to configure themselves into a two-dimensional plane with uniform spatial density. Particular emphasis is paid to the hole repair capability for dynamic network reconfiguration. Specifically, each robot interacts selectively with two neighboring robots so that three robots can converge onto each vertex of the equilateral triangle configuration. Based on the local interaction, the self-configuration algorithm is presented to enable a swarm of robots to form a communication network arranged in equilateral triangular lattices by shuffling the neighbors. Convergence of the algorithms is mathematically proved using Lyapunov theory. Moreover, it is verified that the self-reparation algorithm enables robot swarms to reconfigure themselves when holes exist in the network or new robots are added to the network. Through extensive simulations, we validate the feasibility of applying the proposed algorithms to self-configuring a network of mobile robotic sensors. We describe in detail the features of the algorithm, including self-organization, self-stabilization, and robustness, with the results of the simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beni, G.: From swarm intelligence to swarm robotics. In: Sahin E., Spears W.M. (eds.) SAB 2004: Swarm Robotics. Lecture Notes in Computer Science, vol. 3342, pp. 1–9. Springer, New York (2005)

  2. Sahinm, E.: Swarm robotics: from sources of inspiration to domains of application. In: Sahin E., Spears W.M. (eds.) SAB 2004: Swarm Robotics. Lecture Notes in Computer Science, vol. 3342, pp. 10–20. Springer, New York (2005)

    Google Scholar 

  3. Choset, H.: Coverage for robotics—a survey of recent results. Ann. Math. Artif. Intell. 31, 113–126 (2001)

    Article  Google Scholar 

  4. Cortes, J., Martinez, S., Karatas, T., Bullo, F.: Coverage control for mobile sensing networks. IEEE Trans. Robot. Autom. 20(2), 243–255 (2004)

    Article  Google Scholar 

  5. Suzuki, I., Yamashita, M.: Distributed anonymous mobile robots: formation of geometric patterns. SIAM J. Comput. 28(4), 1347–1363 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  6. Defago, X., Konagaya, A.: Circle formation for oblivious anonymous mobile robots with no common sense of orientation. In: Proc. 2nd ACM Intl. Workshop on Principles of Mobile Computing, pp. 97–104, Toulouse, 30–31 October 2002

  7. Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Pattern formation by autonomous robots without chirality. In: Proc. SIROCCO, pp. 147–162, Catalonia, 27–29 June 2001

  8. Carpin, S., Parker, L.E.: Cooperative leader following in a distributed multi-robot system. In: Proc. IEEE International Conference on Robotics and Automation, pp. 2994–3001, Washington, DC, 11–15 May 2002

  9. Cao, Z., Tan, M., Wang, S., Fan, Y., Zhang, B.: The optimization research of formation control for multiple mobile robots. In: Proc. 4th World Congress on Intelligent Control and Automation, pp. 1270–1274, Shanghai, 10–14 June 2002

  10. Mondada, F., Pettinaro, G.C., Guignard, A., Kwee, I., Floreano, D., Deneubourg, J.-L., Nolfi, S., Gambardella, L.M., Dorigo, M.: Swarm-bot: a new distributed robotic concept. Auton. Robots 17(2–3), 193–221 (2004)

    Article  Google Scholar 

  11. Baldassarre, G., Trianni, V., Bonani, M., Mondada, F., Dorigo, M., Nolfi, S.: Self-organized coordinated motion in groups of physically connected robots. IEEE Trans. Syst. Man Cybern. Part B 37(1), 224–239 (2007)

    Article  Google Scholar 

  12. Ikemoto, Y., Hasegawa, Y., Fukuda, T., Matsuda, K.: Graduated spatial pattern formation of robot group. Inf. Sci. 171(4), 431–445 (2005)

    Article  Google Scholar 

  13. Ishiguro, A., Kawakatsu, T.: Self-assembly through the interplay between control and mechanical systems. In: Proc. IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 631–638, Beijing, 9–13 October 2006

  14. Shimizu, M., Mori, T., Ishiguro, A.: A development of a modular robot that enables adaptive reconfiguration. In: Proc. IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 174–179, Beijing, 9–13 October 2006

  15. Werger, B., Mataric, M.J.: From insect to internet: situated control for networked robot teams. Ann. Math. Artif. Intell. 31, 173–198 (2001)

    Article  Google Scholar 

  16. Balch, T., Hybinette, M.: Social potentials for scalable multi-robot formations. In: Proc. IEEE International Conference on Robotics and Automation, pp. 73–80 (2000)

  17. Howard, A., Mataric, M.J., Sukhatme, G.S.: Mobile sensor network deployment using potential fields: a distributed, scalable solution to the area coverage problem. In: Proc. 6th International Symposium on Distributed Autonomous Robotic Systems, pp. 299–308 (2002)

  18. Spears, W.M., Gordon, F.D.: Using artificial physics to control agents. In: Proc. IEEE International Conference on Information, Intelligence, and Systems, pp. 281–288 (1999)

  19. Spears, W., Spears, D., Hamann, J., Heil, R.: Distributed, physics-based control of swarms of vehicles. Auton. Robots 17(2–3), 137–162 (2004)

    Article  Google Scholar 

  20. Fujibayashi, K., Murata, S., Sugawara, K., Yamamura, M.: Self-organizing formation algorithm for active elements. In: Proc. 21st IEEE Symposium on Reliable Distributed Systems, pp. 416–421 (2002)

  21. McLurkin, J., Smith, J.: Distributed algorithms for dispersion in indoor environments using a swarm of autonomous mobile robots. In: Proc. 7th International Symposium on Distributed Autonomous Robotic Systems, pp. 831–890 (2004)

  22. Shucker, B., Murphey, T., Bennett, J.K.: Switching rules for decentralized control with simple control laws. In: Proc. American Control Conference, pp. 1485–1492 (2007)

  23. Reif, J., Wang, H.: Social potential fields: a distributed behavioral control for autonomous robots. Robot. Auton. Syst. 27(3), 171–194 (1999)

    Article  Google Scholar 

  24. Zou, Y., Chakrabarty, K.: Sensor deployment and target localization based on virtual forces. In: Proc. IEEE Infocom Conference, pp. 1293–1303 (2003)

  25. Heo, N., Varshney, P.K.: A distributed self spreading algorithm for mobile wireless sensor networks. In: Proc. IEEE Wireless Communication and Networking Conference, pp. 1597–1602 (2003)

  26. Cohen, R., Peleg, D.: Local algorithms for autonomous robots systems. In: Flocchini P., Gasieniec L. (eds.) SIROCCO 2006. Lecture Notes in Computer Science, vol. 4056, pp. 29–43. Springer, New York (2006)

    Google Scholar 

  27. Wang, G.-L., Cao, G., Porta, T.L.: Movement-assisted sensor deployment. In: Proc. IEEE Infocom Conference, pp. 2469–2479 (2004)

  28. Martison, E., Payton, D.: Lattice formation in mobile autonomous sensor arrays. In: Sahin E., Spears W.M. (eds.) SAB 2004: Swarm Robotics. Lecture Notes in Computer Science, vol. 3342, pp. 98–111. Springer, New York (2005)

    Google Scholar 

  29. Ghosh, S., Basu, K., Das, S.K.: An architecture for next-generation radio access networks. IEEE Netw. 19(Is. 5), 35–42 (2005)

    Article  Google Scholar 

  30. Fowler, T.: Mesh networks for broadband access. IEEE Rev. 47(Is. 1), 17–22 (2001)

    Article  Google Scholar 

  31. Gurumohan, P.C., Hui, J.: Topology design for free space optical networks. In: Proc. 12th International Conference on Computer Communications and Networks, pp. 576–579 (2003)

  32. Gazi, V., Passino, K.M.: Stability analysis of swarms. IEEE Trans. Automat. Contr. 48(4), 692–696 (2003)

    Article  MathSciNet  Google Scholar 

  33. Olfati-Saber, R., Murray, R.: Distributed cooperative control of multiple vehicle formations using structural potential functions. In: Proc. 15th IFAC World Congress on Automatic Control, pp. 21–26 (2002)

  34. Ogren, P., Fiorelli, E., Leonard, N.E.: Formations with a mission: stable coordination of vehicle group maneuvers. In: Proc. 15th International Symposium on Mathematical Theory Networks and Systems (2002)

  35. Slotine, J.E., Li, W.: Applied Nonlinear Control. Prentice-Hall, Englewood Cliffs (1991)

    MATH  Google Scholar 

  36. Chen, C.-T.: Linear system theory and design, 3rd edn. Oxford University Press, Oxford (1999)

    Google Scholar 

  37. Dolev, S.: Self-Stabilization. MIT, Cambridge (2000)

    MATH  Google Scholar 

  38. Schneider, M.: Self-stabilization. ACM Comput. Surv. 25(1), 45–67 (1993)

    Article  Google Scholar 

  39. Lyengar, R., Kar, K., Banerjee, S.: Low-coordination topologies for redundancy in sensor networks. In: Proc. ACM MobiHoc, pp. 332–342 (2005)

  40. Stojmenovic, I., Wu, J.: Broadcasting and activity scheduling in ad hoc networks. In: Basagini S., Conti M., Giordano S., Stojmenovic I. (eds.) Mobile Ad Hoc Networking, pp. 205–229. IEEE, Piscataway (2004)

  41. Harary, F.: Graph Theory. Addison-Wesley, Reading (1972)

    Google Scholar 

  42. Lee, G., Chong, N.Y.: Decentralized formation control for a team of anonymous mobile robots. In: Proc. 6th Asian Control Conference, pp. 971–976 (2006)

  43. Lam, M., Liu, Y.: ISOGIRD: an efficient algorithm for coverage enhancement in mobile sensor networks. In: Proc. IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1458–1463 (2006)

  44. Nembrini, J., Winfield, A., Melhuish, C.: Minimalist coherent swarming of wireless networked autonomous mobile robots. In: Proc. International Conference on Simulation of Adaptive Behavior, pp. 373–382 (2002)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geunho Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, G., Chong, N.Y. A geometric approach to deploying robot swarms. Ann Math Artif Intell 52, 257–280 (2008). https://doi.org/10.1007/s10472-009-9125-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10472-009-9125-x

Keywords

Mathematics Subject Classifications (2000)

Navigation