Skip to main content
Log in

On the Vapnik-Chervonenkis dimension of computer programs which use transcendental elementary operations

  • Published:
Annals of Mathematics and Artificial Intelligence Aims and scope Submit manuscript

Abstract

We exhibit upper bounds for the Vapnik-Chervonenkis (VC) dimension of a wide family of concept classes that are defined by algorithms using analytic Pfaffian functions. We give upper bounds on the VC dimension of concept classes in which the membership test for whether an input belongs to a concept in the class can be performed either by a computation tree or by a circuit with sign gates containing Pfaffian functions as operators. These new bounds are polynomial both in the height of the tree and in the depth of the circuit. As consequence we obtain polynomial VC dimension not also for classes of concepts whose membership test can be defined by polynomial time algorithms but also for those defined by well-parallelizable sequential exponential time algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aldaz, M., Heintz, J., Matera, G., Montaña, J.L., Pardo, L.M.: Combinatorial hardness proofs for polynomial evaluation (extended abstract). In: Mathematical Foundations of Computer science, 1998 (Brno). Lecture Notes in Computer Science, vol. 1450, pp. 167–175. Springer, Berlin (1998)

    Chapter  Google Scholar 

  2. Ben-Or, M.: Lower bounds for algebraic computation trees. In: Proc. of the 15th Annual ACM Symp. on Theor. Comput., pp. 80–86. ACM, New York (1983)

    Google Scholar 

  3. Blumer, A., Ehrenfeucht, A., Haussler, D., Warmuth, M.K.: Learnability and the Vapnik-Chervonenkis dimension. J. ACM 36, 929–965 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  4. Gabrielov, A.N., Vorobjov, N.: Complexity of computations with Pfaffian and Noetherian functions. In: Normal Forms, Bifurcations and Finiteness Problems in Differential Equations. Kluwer, Dordrecht (2004)

    Google Scholar 

  5. Gabrielov, A., Vorobjov, N., Zell, T.: Betti numbers of semialgebraic and sub-Pfaffian sets. J. Lond. Math. Soc. 69, 27–43 (2003)

    Article  MathSciNet  Google Scholar 

  6. von zur Gathen, J.: Parallel arithmetic computations, a survey. In: Proc. Math. Found. Comput. Sci. 13th. Lecture Notes in Computer Science, vol. 233, pp. 93–112. Springer, Berlin (1986)

    Google Scholar 

  7. Goldberg, P., Jerrum, M.: Bounding the Vapnik-Chervonenkis dimension of concept classes parametrizes by real numbers. Mach. Learn. 18, 131–148 (1995)

    MATH  Google Scholar 

  8. Grigor’ev, D., Vorobjov, N.: Complexity lower bounds for computation trees with elementary transcendental function gates. Theor. Comput. Sci. 157, 185–214 (1996)

    Article  MathSciNet  Google Scholar 

  9. Karpinski, M., Macintyre, A.: Polynomial bounds for VC dimension of sigmoidal and general Pffafian neural networks. J. Comput. Syst. Sci. 54, 169–176 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  10. Khovanskii, A.: On a class of systems of transcendental equations. Sov. Math. Dokl. 22, 762–765 (1980)

    Google Scholar 

  11. Khovanskii, A.: Fewnomials. In: AMS Transl. Math. Monographs, vol. 88. AMS, Providence (1991)

    Google Scholar 

  12. Milnor, J.: On the Betti numbers of real varieties. Proc. Am. Math. Soc. 15, 275–280 (1964)

    Article  MATH  MathSciNet  Google Scholar 

  13. Montaña, J.L., Pardo, L.M.: Lower bounds for arithmetic networks. Appl. Algebra Eng. Commun. Comput. 4, 1–24 (1993)

    Article  MATH  Google Scholar 

  14. Montaña, J.L., Pardo, L.M., Callau, M.: VC dimension bounds for analytic algebraic computations. In: Proc. Computing and Combinatorics, 14 Annual Intenational Conference. Lecture Notes in Computer Science, vol. 5092, pp. 62–71. Springer, Berlin (2008)

    Google Scholar 

  15. Oleinik, O.A.: Estimates of the Betti numbers of real algebraic hypersurfaces. Mat. Sb. N.S. 28, 635–640 (1951) (in Russian)

    MathSciNet  Google Scholar 

  16. Oleinik, O.A., Petrovsky, I.B.: On the topology of real algebraic surfaces. Izv. Akad. Nauk SSSR (in Trans. Am. Math. Soc.) 1, 399–417 (1962)

    Google Scholar 

  17. Thom, R.: Sur l’Homologie des Variétés Algébriques Réelles. In: Differential and Combinatorial Topology (A Symposium in Honor of Marston Morse), pp. 255–265. Princeton University Press, Princeton (1965)

    Google Scholar 

  18. Valiant, L.G.: A theory of the learneable. Commun. ACM 27, 1134–1142 (1984)

    Article  MATH  Google Scholar 

  19. Vapnik, V., Chervonenkis, A.: On the uniform convergence of relative frequencies of events to their probabilities. Theory Probab. Appl. 16, 264–280 (1971)

    Article  MATH  Google Scholar 

  20. Warren, H.E.: Lower bounds for approximation by non linear manifolds. Trans. Am. Math. Soc. 133, 167–178 (1968)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis M. Pardo.

Additional information

Partially supported by MTM2007–62799 and TIN2007–67466–C02–02.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Montaña, J.L., Pardo, L.M. On the Vapnik-Chervonenkis dimension of computer programs which use transcendental elementary operations. Ann Math Artif Intell 56, 371–388 (2009). https://doi.org/10.1007/s10472-009-9148-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10472-009-9148-3

Keywords

Mathematics Subject Classifications (2000)

Navigation