Skip to main content
Log in

Set-structured and cost-sharing heuristics for classical planning

  • Published:
Annals of Mathematics and Artificial Intelligence Aims and scope Submit manuscript

Abstract

Problem abstractions based on (either completely or partially) ignoring delete effects of the actions provide the basis for some seminal classical planning heuristics. However, the palette of the conceptual tools exploited by these heuristics remains rather limited. We study a framework for approximating the optimal cost solutions for problems with no delete effects that bridges between certain works on heuristic-search classical planning and on probabilistic reasoning. Our analysis results in developing a novel heuristic function that combines “informed” set-structured cost estimates and “conservative” action cost sharing. Our empirical comparative evaluation provides a clear evidence for the attractiveness of this heuristic estimate. In addition, we examine a (suggested before in the context of probabilistic reasoning) admissible heuristic based on a stronger variant of action cost sharing. We show that what is good for “typical” problems of probabilistic reasoning turns out not to be so for “typical” problems of classical planning, and provide a formal account for that difference.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allen, J., Hendler, J., Tate, A. (eds.): Readings in Planning. Morgan-Kaufmann, San Francisco (1990)

    Google Scholar 

  2. Bacchus, F.: The AIPS-2000 planning competition. AI Mag. 22(3), 47–56 (2001)

    Google Scholar 

  3. Blum, A.L., Furst, M.L.: Fast planning through planning graph analysis. Artif. Intell. 90(1–2), 279–298 (1997)

    Google Scholar 

  4. Bonet, B., Geffner, H.: Planning as heuristic search. Artif. Intell. 129(1–2), 5–33 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bonet, B., Geffner, H.: Heuristics for planning with penalties and rewards using compiled knowledge. In: Proceedings of the International Conference on Principles of Knowledge Representation and Reasoning (KR), pp. 452–462 (2006)

  6. Brafman, R.I.: On reachability, relevance, and resolution in the planning as satisfiabilty approach. J. Artif. Intell. Res. 14, 1–28 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bryce, D., Kambhampati, S.: How to skin a planning graph for fun and profit: a tutorial on planning graph based reachability heuristics. AI Mag. 27(4) (2006)

  8. Bryce, D., Kambhampati, S., Smith, D.E.: Planning graph heuristics for belief space search. J. Artif. Intell. Res. 26, 35–99 (2006)

    Article  MATH  Google Scholar 

  9. Bylander, T.: The computational complexity of propositional STRIPS planning. Artif. Intell. 69(1–2), 165–204 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  10. Castellini, C., Giunchiglia, E., Tacchella, A.: SAT-based planning in complex domains: concurrency, constraints and nondeterminism. Artif. Intell. 147(1–2), 85–117 (2003)

    MATH  MathSciNet  Google Scholar 

  11. Chapman, D.: Planning for conjunctive goals. Artif. Intell. 32(3), 333–377 (1987)

    Article  MATH  Google Scholar 

  12. Charniak, E., Husain, S.: A new admissible heuristic for minimal-cost proofs. In: Proceedings of the National Conference on Artificial Intelligence (AAAI), pp. 446–451 (1991)

  13. Dean, T., Wellman, M.: Planning and Control. Morgan-Kaufmann, San Francisco (1991)

    Google Scholar 

  14. Do, M.B., Kambhampati, S.: Planning as constraint satisfaction: solving the planning graph by compiling it into CSP. Artif. Intell. 132(2), 151–182 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  15. Domshlak, C., Hoffmann, J.: Fast probabilistic planning through weighted model counting. In: Proceedings of the 16th International Conference on Automated Planning and Scheduling (ICAPS), pp. 243–252 (2006)

  16. Domshlak, C., Hoffmann, J.: Probabilistic planning via heuristic forward search and weighted model counting. J. Artif. Intell. Res. 30, 565–620 (2007)

    MATH  MathSciNet  Google Scholar 

  17. Edelkamp, S.: Planning with pattern databases. In: Proceedings of the European Conference on Planning (ECP), pp. 13–24 (2001)

  18. Edelkamp, S.: Symbolic pattern databases in heuristic search planning. In: Proceedings of the International Conference on AI Planning and Scheduling (AIPS), pp. 274–293 (2002)

  19. Fikes, R.E., Nilsson, N.: STRIPS: A new approach to the application of theorem proving to problem solving. Artif. Intell. 2, 189–208 (1971)

    Article  MATH  Google Scholar 

  20. Geffner, H.: Perspectives on artificial intelligence planning. In: Proceedings of the Eighteenth National Conference on Artificial intelligence (AAAI), pp. 1013–1023 (2002)

  21. Gerevini, A., Saetti, A., Serina, I.: Planning through stochastic local search and temporal action graphs. J. Artif. Intell. Res. 20, 239–290 (2003)

    MATH  Google Scholar 

  22. Ghallab, M., Nau, D., Traverso, P.: Automated Planning. Morgan Kaufmann, San Francisco (2004)

    MATH  Google Scholar 

  23. Hart, P.E., Nilsson, N.J., Raphael, B.: A formal basis for the heuristic determination of minimum cost paths. IEEE Trans. Syst. Sci. Cybern. 4(2), 100–107 (1968)

    Article  Google Scholar 

  24. Haslum, P., Bonet, B., Geffner, H.: New admissible heuristics for domain-independent planning. In: Proceedings of the 20th National Conference on Artificial Intelligence (AAAI), pp. 1163–1168. Pittsburgh, PA (2005)

  25. Haslum, P., Geffner, H.: Admissible heuristics for optimal planning. In: Proceedings of the 15th International Conference on Artificial Intelligence Planning Systems (AIPS), pp. 140–149. Breckenridge, CO (2000)

  26. Helmert, M.: The fast downward planning system. J. Artif. Intell. Res. 26, 191–246 (2006)

    Article  MATH  Google Scholar 

  27. Helmert, M., Haslum, P., Hoffmann, J.: Flexible abstraction heuristics for optimal sequential planning. In: Proceedings of the 17th International Conference on Automated Planning and Scheduling (ICAPS), pp. 200–207 (2007)

  28. Helmert, M., Mattmüller, R.: Accuracy of admissible heuristic functions in selected planning domains. In: Proceedings of the 23rd AAAI Conference on Artificial Intelligence, pp. 938–943. Chicago, IL (2008)

  29. Hendler, J., Tate, A., Drummond, M.: AI planning: systems and techniques. AI Mag. (1990)

  30. Hoffmann, J.: Utilizing Problem Structure in Planning: A Local Search Approach. No. 2854 in LNAI. Springer, New York (2003)

    Google Scholar 

  31. Hoffmann, J.: When ‘ignoring delete lists’ works: Local search topology in planning benchmarks. J. Artif. Intell. Res. 24, 685–758 (2005)

    MATH  Google Scholar 

  32. Hoffmann, J., Brafman, R.I.: Conformant planning via heuristic forward search: a new approach. Artif. Intell. 170(6–7), 507–541 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  33. Hoffmann, J., Nebel, B.: The FF planning system: fast plan generation through heuristic search. J. Artif. Intell. Res. 14, 253–302 (2001)

    MATH  Google Scholar 

  34. Katz, M., Domshlak, C.: Structural patterns heuristics. In: ICAPS-07 Workshop on Heuristics for Domain-independent Planning: Progress, Ideas, Limitations, Challenges, Providence, RI (2007)

  35. Kautz, H., Selman, B.: Pushing the envelope: Planning, propositional logic, and stochastic search. In: Proceedings of the National Conference on Artificial Intelligence (AAAI), pp. 1194–1201 (1996)

  36. Kautz, H., Selman, B.: Unifying SAT-based and graph-based planning. In: Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI), pp. 318–325 (1999)

  37. Keyder, E., Geffner, H.: Heuristics for planning with action costs revisited. In: Proceedings of the 18th European Conference on Artificial Intelligence, Patras, Greece (2008)

  38. Korf, R.E.: Depth-first iterative-deepening: an optimal admissible tree search. Artif. Intell. 27(1), 97–109 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  39. Korf, R.E.: Heuristic evaluation functions in artificial intelligence search algorithms. Minds and Mach. 5(4), 489–498 (1995)

    Article  Google Scholar 

  40. Long, D., Fox, M.: The 3rd international planning competition: Results and analysis. J. Artif. Intell. Res. 20, 1–59 (2003)

    Article  MATH  Google Scholar 

  41. Lopez, A., Bacchus, F.: Generalizing GraphPlan by formulating planning as CSP. In: Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI), pp. 954–960 (2003)

  42. McDermott, D.V.: Using regression-match graphs to control search in planning. Artif. Intell. 109(1–2), 111–159 (1999)

    Article  MATH  Google Scholar 

  43. Nguyen, X.-L., Kambhampati, S., Nigenda, R.S.: Planning graph as the basis for deriving heuristics for plan synthesis by state space and CSP search. Artif. Intell. 135(1–2), 73–123 (2002)

    Article  MATH  Google Scholar 

  44. Pearl, J.: Heuristics—Intelligent Search Strategies for Computer Problem Solving. Addison-Wesley, Reading (1984)

    Google Scholar 

  45. Refanidis, I., Vlahavas, I.P.: The GRT planning system: backward heuristic construction in forward state-space planning. J. Artif. Intell. Res. 15, 115–161 (2001)

    Article  MATH  Google Scholar 

  46. Rintanen, J.: Unified definition of heuristics for classical planning. In: Proceedings of the 17th European Conference on Artificial Intelligence (ECAI-06), pp. 600–604 (2006)

  47. Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach, 2nd edn. Pearson, Metairie (2004)

    MATH  Google Scholar 

  48. Shimony, S., Domshlak, C., Santos, E.J.: Cost-sharing in Bayesian knowledge bases. In: Proceedings of the 13th Conference on Uncertainty in Artificial Intelligence (UAI), pp. 421–428 (1997)

  49. Slaney, J., Thiébaux, S.: Blocks world revisited. Artif. Intell. 125, 119–153 (2001)

    Article  MATH  Google Scholar 

  50. Smith, D.E., Weld, D.: Conformant graphplan. In: Proceedings of the National Conference on Artificial Intelligence (AAAI), pp. 889–896 (1998)

  51. Sussman, G.J.: A Computer Model of Skill Acquisition. Elsevier, Amsterdam (1975)

    Google Scholar 

  52. Vidal, V.: A lookahead strategy for heuristic search planning. In: Proceedings of the 14th International Conference on Automated Planning and Scheduling (ICAPS), pp. 150–160 (2004)

  53. Weld, D.S.: Recent advances in AI planning. AI Mag. 20(2), 93–123 (1999)

    Google Scholar 

  54. Wilkins, D.E.: Domain-independent planning: representation and plan generation. Artif. Intell. 22, 269–301 (1984)

    Article  Google Scholar 

  55. Wolfman, S.A., Weld, D.: Combining linear programming and satisfiability solving for resource planning. Knowl. Eng. Rev. 15(1) (2000)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carmel Domshlak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Domshlak, C., Mirkis, V. Set-structured and cost-sharing heuristics for classical planning. Ann Math Artif Intell 56, 211–239 (2009). https://doi.org/10.1007/s10472-009-9170-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10472-009-9170-5

Keywords

Mathematics Subject Classification (2000)

Navigation