Skip to main content
Log in

A subclass of Horn CNFs optimally compressible in polynomial time

  • Published:
Annals of Mathematics and Artificial Intelligence Aims and scope Submit manuscript

Abstract

The problem of Horn Minimization (HM) can be stated as follows: given a Horn CNF representing a Boolean function f, find a shortest possible (optimally compressed) CNF representation of f, i.e., a CNF representation of f which consists of the minimum possible number of clauses. This problem is the formalization of the problem of knowledge compression for speeding up queries to propositional Horn expert systems, and it is known to be NP-hard. There are two subclasses of Horn functions for which HM is known to be solvable in polynomial time: acyclic and quasi-acyclic Horn functions. In this paper we define a new class of Horn functions properly containing both of the known classes and design a polynomial time HM algorithm for this new class.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ausiello, G., D’Atri, A., Sacca, D.: Minimal representation of directed hypergraphs. SIAM J. Comput. 15, 418–431 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  2. Boros, E., Čepek, O.: On the complexity of Horn minimization. RUTCOR Research Report RRR 1-94, Rutgers University, New Brunswick, NJ (1994)

  3. Boros, E., Čepek, O., Kogan, A.: Horn minimization by iterative decomposition. Ann. Math. Artif. Intell. 23, 321–343 (1998)

    Article  MATH  Google Scholar 

  4. Boros, E., Čepek, O., Kogan, A., Kučera, P.: Exclusive and essential sets of implicates of Boolean functions. Discrete Appl. Math. 158(2), 81–96 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  5. Buning, H.K., Letterman, T.: Propositional Logic: Deduction and Algorithms. Cambridge University Press (1999)

  6. Cadoli, M., Donini, F.M.: A survey on knowledge compilation. AI Commun. 10(3–4), 137–150 (1997)

    Google Scholar 

  7. Čepek, O.: Structural properties and minimization of Horn Boolean functions. Doctoral dissertation, Rutgers University, New Brunswick, NJ (1995)

  8. Darwiche, A., Marquis, P.: A knowledge compilation map. J. Artif. Intell. Res. 17, 229–264 (2002)

    MATH  MathSciNet  Google Scholar 

  9. Dechter, R., Pearl, J.: Structure identification in relational data. Artif. Intell. 58, 237–270 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  10. Delobel, C., Casey, R.G.: Decomposition of a data base and the theory of Boolean switching functions. IBM J. Res. Develop. 17, 374–386 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  11. Dowling, W.F., Gallier, J.H.: Linear time algorithms for testing the satisfiability of propositional Horn formulae. J. Log. Program. 3, 267–284 (1984)

    Article  MathSciNet  Google Scholar 

  12. Eswaran, K.P., Tarjan, R.E.: Augmentation problems. SIAM J. Comput. 5, 653–665 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  13. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W.H. Freeman and Company, San Francisco (1979)

    MATH  Google Scholar 

  14. Genesereth, M.R., Nilsson, N.J.: Logical Foundations of Artificial Intelligence. Morgan Kaufmann, Los Altos, CA (1987)

    MATH  Google Scholar 

  15. Hammer, P.L., Kogan, A.: Horn functions and their DNFs. Inf. Process. Lett. 44, 23–29 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  16. Hammer, P.L., Kogan, A.: Horn function minimization and knowledge compression in production rule bases. RUTCOR Research Report RRR 8-92, Rutgers University, New Brunswick, NJ (1992)

  17. Hammer, P.L., Kogan, A.: Optimal compression of propositional Horn knowledge bases: complexity and approximation. Artif. Intell. 64, 131–145 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  18. Hammer, P.L., Kogan, A.: Knowledge compression—logic minimization for expert systems. In: Computers As Our Better Partners. Proceedings of the IISF/ACM Japan International Symposium, pp. 306–312. World Scientific, Singapore (1994)

    Google Scholar 

  19. Hammer, P.L., Kogan, A.: Quasi-acyclic propositional Horn knowledge bases: optimal compression. IEEE Trans. Knowl. Data Eng. 7(5), 751–762 (1995)

    Article  Google Scholar 

  20. Ibaraki, T., Kogan, A., Makino, K.: Functional dependencies in Horn theories. Artif. Intell. 108(1–2), 1–30 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  21. Ibaraki, T., Kogan, A., Makino, K.: On functional dependencies in q-Horn theories. Artif. Intell. 131(1–2), 171–187 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  22. Itai, A., Makowsky, J.A.: Unification as a complexity measure for logic programming. J. Log. Program. 4, 105–117 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  23. Kautz, H., Kearns, M., Selman, B.: Forming concepts for fast inference. In: Proceedings of the Tenth National Conference on Artificial Intelligence (AAAI’92), pp. 786–793. AAAI, San Jose, CA (1992)

  24. Maier, D.: Minimal covers in the relational database model. J. ACM 27, 664–674 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  25. Minoux, M.: LTUR: a simplified linear time unit resolution algorithm for Horn formulae and computer implementation. Inf. Process. Lett. 29, 1–12 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  26. Quine, W.: The problem of simplifying the truth functions. Am. Math. Mon. 59, 521–531 (1952)

    Article  MATH  MathSciNet  Google Scholar 

  27. Quine, W.: A way to simplify truth functions. Am. Math. Mon. 62, 627–631 (1955)

    Article  MATH  MathSciNet  Google Scholar 

  28. Raghavan, S.: A note on Eswaran and Tarjan’s algorithm for the strong connectivity augmentation problem. In: Golden, B.L., Raghavan, S., Wasil, E.A. (eds.) The Next Wave in Computing, Optimization, and Decision Technologies, pp. 19–26. Springer (2005)

  29. Reiter, R., de Kleer, J.: Foundations of assumption-based truth maintenance systems: preliminary report. In: Proceedings of the Sixth National Conference on Artificial Intelligence (AAAI’87), pp. 183–189. AAAI, San Jose, CA (1987)

  30. Selman, B., Kautz, H.: Knowledge compilation and theory approximation. J. ACM 43(2), 193–224 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  31. Tarjan, R.E.: Depth first search and linear graph algorithms. SIAM J. Comput. 2, 146–160 (1972)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ondřej Čepek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boros, E., Čepek, O., Kogan, A. et al. A subclass of Horn CNFs optimally compressible in polynomial time. Ann Math Artif Intell 57, 249–291 (2009). https://doi.org/10.1007/s10472-010-9197-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10472-010-9197-7

Keywords

Mathematics Subject Classifications (2010)

Navigation