Skip to main content
Log in

Fast algorithms for implication bases and attribute exploration using proper premises

  • Published:
Annals of Mathematics and Artificial Intelligence Aims and scope Submit manuscript

Abstract

A central task in formal concept analysis is the enumeration of a small base for the implications that hold in a formal context. The usual stem base algorithms have been proven to be costly in terms of runtime. Proper premises are an alternative to the stem base. We present a new algorithm for the fast computation of proper premises. It is based on a known link between proper premises and minimal hypergraph transversals. Two further improvements are made, which reduce the number of proper premises that are obtained multiple times and redundancies within the set of proper premises. We have evaluated our algorithms within an application related to refactoring of model variants. In this application an implicational base needs to be computed, and runtime is more crucial than minimal cardinality. In addition to the empirical tests, we provide heuristic evidence that an approach based on proper premises will also be beneficial for other applications. Finally, we show how our algorithms can be extended to an exploration algorithm that is based on proper premises.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Babin, M., Kuznetsov, S.: Recognizing pseudo-intents is coNP-complete. In: Kryszkiewicz, M., Obiedkov, S. (eds.) Proc. of the 7th Int. Conf. on Concept Lattices and Their Applications, vol. 672. CEUR Workshop Proceedings (2010)

  2. Bailey, J., Manoukian, T., Ramamohanarao, K.: A fast algorithm for computing hypergraph transversals and its application in mining emerging patterns. In: ICDM, pp. 485–488. IEEE Computer Society (2003)

  3. Berge, C.: Hypergraphs—combinatorics of finite sets. North-Holland, Amsterdam (1989)

    MATH  Google Scholar 

  4. Bertet, K., Monjardet, B.: The multiple facets of the canonical direct unit implicational basis. Theor. Comput. Sci. 411(22–24), 2155–2166 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  5. Borchmann, D.: Conexp-clj—a general-purpose tool for formal concept analysis. See http://www.math.tu-dresden.de/~borch/conexp-clj/

  6. Borchmann, D.: A General Form of Attribute Exploration. LTCS-Report 13-02, Chair of Automata Theory, Institute of Theoretical Computer Science, Technische Universität Dresden, Dresden, Germany (2013). See http://lat.inf.tu-dresden.de/research/reports.html

  7. Boros, E., Elbassioni, K., Gurvich, V., Khachiyan, L.: An efficient incremental algorithm for generating all maximal independent sets in hypergraphs of bounded dimension. Parallel Process. Lett. 10, 253–266 (2000)

    Article  MathSciNet  Google Scholar 

  8. Boros, E., Elbassioni, K., Makino, K.: On berge multiplication for monotone boolean dualization. In: Proceedings of the 35th international colloquium on Automata, Languages and Programming, Part I, ICALP ’08, pp. 48–59. Springer-Verlag, Berlin, Heidelberg (2008)

    Chapter  Google Scholar 

  9. Cios, K.J., Kurgan, L.A., Goodenday, L.S.: UCI Machine Learning Repository: SPECT Heart Data Set (2001). http://archive.ics.uci.edu/ml/datasets/SPECT+Heart

  10. Distel, F.: Hardness of enumerating pseudo-intents in the lectic order. In: Sertkaya, B., Kwuida, L. (eds.) Proc. of the 8th Int. Conf. on Formal Concept Analysis. Lecture Notes in Artificial Intelligence, vol. 5986, pp. 124–137. Springer (2010)

  11. Distel, F.: Hardness of enumerating pseudo-intents in the lectic order. In: Kwuida, L., Sertkaya, B. (eds.) ICFCA. Lecture Notes in Computer Science, vol. 5986, pp. 124–137. Springer (2010)

  12. Distel, F., Borchmann, D.: Expected Numbers of Proper Premises and Concept Intents. Preprint, Institut für Algebra, TU Dresden (2011)

  13. Distel, F., Sertkaya, B.: On the complexity of enumerating pseudo-intents. Discret. Appl. Math. 159(6), 450–466 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  14. Dong, G., Li, J.: Mining border descriptions of emerging patterns from dataset pairs. Knowl. Inf. Syst. 8(2), 178–202 (2005)

    Article  Google Scholar 

  15. Eiter, T., Gottlob, G., Makino, K.: New results on monotone dualization and generating hypergraph transversals. SIAM J. Comput. 32, 514–537 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  16. Fredman, M.L., Khachiyan, L.: On the complexity of dualization of monotone disjunctive normal forms. J. Algorithms 21(3), 618–628 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  17. Ganter, B.: Two Basic Algorithms in Concept Analysis. Preprint 831, Fachbereich Mathematik, TU Darmstadt, Darmstadt, Germany (1984)

  18. Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations. Springer, New York (1999)

    Book  MATH  Google Scholar 

  19. Guigues, J.L., Duquenne, V.: Familles minimales d’implications informatives résultant d’un tableau de données binaires. Math. Sci. Hum. 95, 5–18 (1986)

    MathSciNet  Google Scholar 

  20. Gunopulos, D., Mannila, H., Khardon, R., Toivonen, H.: Data mining, hypergraph transversals, and machine learning (extended abstract). In: Proceedings of the 16th ACM SIGACT-SIGMOD-SIGART symposium on Principles of database systems, PODS ’97, pp. 209–216. ACM, New York, NY, USA (1997). doi:10.1145/263661.263684

    Chapter  Google Scholar 

  21. Hagen, M.: Algorithmic and Computational Complexity Issues of MONET. Ph.D. thesis, Friedrich-Schiller-Universität Jena (2008)

  22. Kavvadias, D.J., Stavropoulos, E.C.: An efficient algorithm for the transversal hypergraph generation. J. Graph Algorithms Appl. 9(2), 239–264 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  23. Kuznetsov, S.O.: On the intractability of computing the Duquenne-Guigues base. J. Univers. Comput. Sci. 10(8), 927–933 (2004)

    MATH  Google Scholar 

  24. Maier, D.: Theory of Relational Databases. Computer Science Pr (1983)

  25. Mannila, H., Räihä, K.J.: Algorithms for inferring functional dependencies from relations. Data Knowl. Eng. 12(1), 83–99 (1994)

    Article  MATH  Google Scholar 

  26. Obiedkov, S., Duquenne, V.: Attribute-incremental construction of the canonical implication basis. Ann. Math. Artif. Intell. 49(1–4), 77–99 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  27. Reppe, H.: Attribute exploration using implications with proper premises. In: Eklund, P.W., Haemmerlé, O. (eds.) ICCS, Lecture Notes in Computer Science, vol. 5113, pp. 161–174. Springer (2008)

  28. Rudolph, S.: Some notes on pseudo-closed sets. In: Kuznetsov, S.O., Schmidt, S. (eds.) Proc. of the 5th Int. Conf. on Formal Concept Analysis. Lecture Notes in Computer Science, vol. 4390, pp. 151–165. Springer (2007)

  29. Ryssel, U., Ploennigs, J., Kabitzsch, K.: Automatic variation-point identification in function-block-based models. In: Proc. of the 9th Int. Conf. on Generative Programming and Component Engineering, pp. 23–32. ACM (2010)

  30. Ryssel, U., Ploennigs, J., Kabitzsch, K.: Extraction of feature models from formal contexts. In: Proc. of the 15th Int. Software Product Line Conference, pp. 4:1–4:8. ACM (2011)

  31. Schlimmer, J.: UCI Machine Learning Repository: 1984 United Stated Congressional Voting Records (1987). http://archive.ics.uci.edu/ml/datasets/Congressional+Voting+Records

  32. Takata, K.: A worst-case analysis of the sequential method to list the minimal hitting sets of a hypergraph. SIAM J. Discret. Math. 21(4), 936–946 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  33. Zaki, M.J., Ogihara, M.: Theoretical foundations of association rules. In: Proceedings of the 3rd ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery (1998)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felix Distel.

Additional information

The author Daniel Borchmann has been supported by DFG Graduiertenkolleg 1763 (QuantLA).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ryssel, U., Distel, F. & Borchmann, D. Fast algorithms for implication bases and attribute exploration using proper premises. Ann Math Artif Intell 70, 25–53 (2014). https://doi.org/10.1007/s10472-013-9355-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10472-013-9355-9

Keywords

Mathematics Subject Classification (2010)

Navigation