Abstract
Integrity constraints capture relevant requirements of an application that should be satisfied by every state of the database. The theory of integrity constraints is largely a theory over relations. To make data processing more efficient, SQL permits database states to be partial bags that can accommodate incomplete and duplicate information. Integrity constraints, however, interact differently on partial bags than on the idealized special case of relations. In this current paper, we study the implication problem of the combined class of general cardinality constraints and not-null constraints on partial bags. We investigate structural properties of Armstrong tables for general cardinality constraints and not-null constraints, and prove exact conditions for their existence. For the fragment of general max-cardinality constraints, unary min-cardinality constraints and not-null constraints we show that the effort for constructing Armstrong tables is precisely exponential. For the same fragment we provide an axiomatic characterization of the implication problem. The major tool for establishing our results is the Hajnal and Szemerédi theorem on the equitable colorings of graphs.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley (1995)
Armstrong, W.W.: Dependency structures of data base relationships. In: IFIP, pp. 580–583 (1974)
Atzeni, P., Morfuni, N.: Functional dependencies and constraints on null values in database relations. Inform. Control. 70(1), 1–31 (1986)
Chen, P.P.: The entity-relationship model: towards a unified view of data. ACM ToDS 1, 9–36 (1976)
Codd, E.F.: A relational model of data for large shared data banks. Comm. ACM 13(6), 377–387 (1970)
Codd, E.F.: Extending the database relational model to capture more meaning. ACM ToDS 4(4), 397–434 (1979)
Codd, E.F.: Missing information (applicable and inapplicable) in relational databases. SIGMOD Record 15(4), 53–78 (1986)
Colbourn, C.J., Dinitz, J. H. (eds.): The CRC handbook of combinatorial designs. CRC press (2006)
De Marchi, F., Petit, J.-M.: Semantic sampling of existing databases through informative Armstrong databases. Inf. Syst. 32, 446–457 (2007)
Demetrovics, J., Gyepesi, G.: On the functional dependency and some generalizations of it. Acta Cybernet. 5, 295–305 (1981)
Demetrovics, J., Katona, G.O.H., Sali, A.: The characterization of branching dependencies. Discret. Appl. Math. 40, 139–153 (1992)
Demetrovics, J., Libkin, L., Muchnik, I.B.: Functional dependencies in relational databases: a lattice point of view. Discret. Appl. Math. 40, 155–185 (1992)
Demetrovics, J., Rónyai, L., Nam Son, H.: On the representation of dependencies by propositional logic. In: MFDBS, pp. 230–242. Springer (1991)
Demetrovics, J., Thi, V.D.: Armstrong relations, functional dependencies and strong dependencies. Comp. Artif. Intell. 14 (1995)
Demetrovics, J., Thi, V.D.: Some remarks on generating Armstrong and inferring functional dependencies relation. Acta Cybernet. 12, 167–180 (1995)
Dukes, P., Howard, L.: Group divisible designs in MOLS of order ten. Designs, Codes and Cryptography, pp. 1–9 (2012)
Erdős, P.: Extremal problems in graph theory. In: A Seminar in Graph Theory, pp. 54–64. Rinehart and Winston, Holt (1967)
Fagin, R.: Horn clauses dependencies and database. J. ACM 29, 952–985 (1982)
Fagin, R., Vardi, M.Y.: Armstrong databases for functional and inclusion dependencies. Inf. Process. Lett. 16, 13–19 (1983)
Felea, V.: Armstrong-like relations for functional partition dependencies. Sci. Ann. Cuza Univ. 1, 69–76 (1992)
Ferrarotti, F., Hartmann, S., Link, S.: A precious class of cardinality constraints for flexible XML data processing. In: Conceptual Modeling - 30th International Conference of LNCS, ER, vol. 6998, pp. 175–188. Springer (2011)
Gulutzan, P., Pelzer, T.: SQL-99 Complete, Really. CMP (1999)
Hajnal, A., Szemerédi, E.: Proof of a conjecture of Erdős. In: Combinatorial theory and its applications, Colloquia Journal Bolyai Mathematics Social, vol. 4, pp. 601–623. North-Holland (1970)
Hartmann, S.: On the implication problem for cardinality constraints and functional dependencies. Ann. Math. Artif. Intell. 33, 253–307 (2001)
Hartmann, S., Kirchberg, M., Link, S.: Design by example for SQL table definitions with functional dependencies. VLDB J. 21, 121–144 (2012)
Hartmann, S., Köhler, H., Link, S., Thalheim, B.: Armstrong databases and reasoning for functional dependencies and cardinality constraints over partial bags. In: Foundations of Information and Knowledge Systems - 7th International Symposium, FoIKS, LNCS, vol. 7153, pp. 164–183. Springer (2012)
Hartmann, S., Leck, U., Link, S.: On matrix representations of participation constraints. In: ER Workshops, LNCS, vol. 5833, pp. 75–84. Springer (2009)
Hartmann, S., Link, S.: Numerical constraints on XML data. Inf. Comput. 208(5), 521–544 (2010)
ISO/ANSI. ISO/IEC 9075:2011 - Information technology Database languages SQL (2011)
Jungnickel, D.: Graphs, Networks and Algorithms. Springer (2008)
Katona, G.O.H., Sali, A.: New type of coding problem motivated by database theory. Discret. Appl. Math. 144, 140–148 (2004)
Kierstead, H.A., Kostochka, A.V.: A short proof of the Hajnal-Szemerédi Theorem on equitable colouring. Comb. Probab. Comput. 17(02), 265–270 (2008)
Kierstead, H.A., Kostochka, A.V., Mydlarz, M., Szemerdi, E.: A fast algorithm for equitable coloring. Combinatorica 30(2), 217–224 (2010)
Langeveldt, W.-D., Link, S.: Empirical evidence for the usefulness of Armstrong relations in the acquisition of meaningful functional dependencies. Inf. Syst. 35(3), 352–374 (2010)
Lenzerini, M., Nobili, P.: On the satisfiability of dependency constraints in entity-relationship schemata. Inform. Syst. 15, 453–461 (1990)
Levene, M., Loizou, G.: Axiomatisation of functional dependencies in incomplete relations. Theor. Comput. Sci. 206(1–2), 283–300 (1998)
Liddle, S.W., Embley, D.W., Woodfield, S. N.: Cardinality constraints in semantic data models. Data Knowl. Eng. 11, 235–270 (1993)
Link, S.: Armstrong databases: validation, communication and consolidation of conceptual models with perfect test data. In: Conceptual Modelling - 8th Asia-Pacic Conference, APCCM, CRPIT, vol. 130, pp. 3–20 (2012)
Lopes, S., Petit, J.-M., Lakhal, L.: Efficient discovery of functional dependencies and Armstrong relations. In: EDBT, LNCS, vol. 1777, pp. 350–364. Springer (2000)
Mannila, H., Räihä, K.-J.: Design by example: an application of Armstrong relations. J. Comput. Syst. Sci. 33(2), 126–141 (1986)
Sali, A., Székely, L.A.: On the existence of Armstrong instances with bounded domains. In: Foundations of Information and Knowledge Systems - 5th International Symposium, FoIKS, LNCS, vol. 4932, pp. 151–157. Springer (2008)
Thalheim, B.: Dependencies in Relational Databases. Teubner (1991)
Thalheim, B.: Fundamentals of cardinality constraints. In: ER Conference, LNCS, vol. 645, pp. 7–23. Springer (1992)
Thalheim, B.: Entity-Relationship Modeling. Springer (2000)
Thi, V.D., Son, N.H.: On Armstrong relations for strong dependencies, Vol. 17 (2006)
Zaniolo, C.: Database relations with null values. J. Comput. Syst. Sci. 28(1), 142–166 (1984)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Hartmann, S., Köhler, H., Leck, U. et al. Constructing Armstrong tables for general cardinality constraints and not-null constraints. Ann Math Artif Intell 73, 139–165 (2015). https://doi.org/10.1007/s10472-014-9423-9
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10472-014-9423-9
Keywords
- SQL table
- Incomplete database
- Cardinality constraints
- Null-free subschema
- Implication
- Inference
- Armstrong database