Skip to main content
Log in

Binary image reconstruction from a small number of projections and the morphological skeleton

  • Published:
Annals of Mathematics and Artificial Intelligence Aims and scope Submit manuscript

Abstract

In binary tomography, the goal is to reconstruct binary images from a small set of their projections. This task can be underdetermined, meaning that several binary images can have the same projections, especially when only one or two projections are given. On the other hand, it is known that a binary image can be exactly reconstructed from its morphological skeleton when all skeletal labels are known. However, if only the skeletal points are given, different labellings yield different reconstructed images. In this paper, we consider a mixture of the above problems, reconstructing a binary image from few projections and the morphological skeleton. We show that the problem is NP-complete, yet a result with low projection and pixel error usually can be achieved, even if only a single projection is available. Three different variants of a method based on Simulated Annealing are developed and compared with respect to reconstruction time and error using artificial binary images.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aert, S.V., Batenburg, K.J., Rossell, M.D., Erni, R., Tendeloo, G.V.: Three-dimensional atomic imaging of crystalline nanoparticles. Nature 470, 374–377 (2011)

    Article  Google Scholar 

  2. Back, T.: Evolutionary Algorithms in Theory and Practice - Evolution Strategies, Evolutionary Programming, Genetic Algorithms. Oxford University Press, New York (1996)

    Google Scholar 

  3. Balázs, P.: A benchmark set for the reconstruction of hv-convex discrete sets. Discret. Appl. Math. 157, 3447–3456 (2009)

    Article  MATH  Google Scholar 

  4. Barcucci, E., Del Lungo, A., Nivat, M., Pinzani, R.: Reconstructing convex polyominoes from horizontal and vertical projections. Theor. Comput. Sci. 155, 321–347 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  5. Batenburg, K.J., Bals, S., Sijbers, J., Kuebel, C., Midgley, P.A., Hernandez, J.C., Kaiser, U., Encina, E.R., Coronado, E.A., Tendeloo, G.V.: 3D imaging of nanomaterials by discrete tomography. Ultramicroscopy 109(6), 730–740 (2009)

    Article  Google Scholar 

  6. Baumann, J., Kiss, Z., Krimmel, S., Kuba, A., Nagy, A., Rodek, L., Schillinger, B., Stephan, J.: Discrete tomography methods for nondestructive testing. In: Herman, G.T., Kuba, A (eds.) Advances in Discrete Tomography and Its Applications, pp. 303–331. Birkhäuser, Boston (2007)

  7. Blum, H.: Biological shape and visual science (Part I). J. Theor. Biol. 38, 205–287 (1973)

    Article  Google Scholar 

  8. Brunetti, S., Del Lungo, A., Del Ristoro, F., Kuba, A., Nivat, M.: Reconstruction of 8- and 4-connected convex discrete sets from row and column projections. Linear Algebra Appl. 339, 37–57 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  9. Garey, M.R., Johnson, D.S.: Computers and Intractibility: A Guide to the Theory of NP-Completeness. Freeman, San Francisco (1979)

    MATH  Google Scholar 

  10. Gesù, V.D., Bosco, G.L., Millonzi, F., Valenti, C.: A memetic algorithm for binary image reconstruction. In: Brimkov, V.E., Barneva, R.P., Hauptman, H.A. (eds.) IWCIA 2008. LNCS, Vol. 4958, pp. 384–395. Springer, Heidelberg (2008)

  11. Giblin, P., Kimia, B.B.: A formal classification of 3D medial axis points and their local geometry. IEEE Trans. Pattern Anal. Machine Intell. 26(2), 238–251 (2004)

    Article  Google Scholar 

  12. Gonzalez, R.C., Woods, R.E.: Digital Image Processing, 3rd edn. Prentice Hall (2008)

  13. Hantos, N., Balázs, P.: The reconstruction of polyominoes from horizontal and vertical projections and morphological skeleton is NP-complete. Fundamenta Informaticae 125(3–4), 343–359 (2013)

    MATH  MathSciNet  Google Scholar 

  14. Hantos, N., Balázs, P., Palágyi, K.: Binary image reconstruction from two projections and morphological skeleton. In: 15th International Workshop on Combinatorial Image Analysis (IWCIA), Lecture Notes in Computer Science, vol. 7655, pp. 263–274 (2012)

  15. Herman, G.T., Kuba, A. (eds.): Advances in Discrete Tomography and Its Applications. Birkhäuser, Boston (2007)

  16. Hochstättler, W., Loebl, M., Moll, C.: Generating convex polyominoes at random. Discret. Math. 153, 165–176 (1996)

    Article  MATH  Google Scholar 

  17. Irving, R.W., Jerrum, M.R.: Three-dimensional data security problems. SIAM J. Comput. 23, 170–184 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  18. Kirkpatrick, S., Gelatt, C.D. Jr., Vecchi, M.P.: Optimization by simulated annealing. Science 220, 671–680 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  19. Kuba, A.: Reconstruction in different classes of 2D discrete sets. Lect. Notes Comput. Sci. 1568, 153–163 (1999)

    Article  Google Scholar 

  20. Maragos, P., Schafer, R.W.: Morphological skeleton representation and coding of binary images. IEEE Trans. Acoustics Speech Signal Process. 34(5), 1228–1244 (1986)

    Article  Google Scholar 

  21. Nagy, A., Kuba, A.: Parameter settings for reconstructing binary matrices from fan-beam projections. J. Comput. Inf. Technol. 14(2), 100–110 (2006)

    Google Scholar 

  22. Pierre, S.: Morphological Image Analysis. Springer-Verlag (2003)

  23. Ryser, H.J.: Combinatorial properties of matrices of zeros and ones. Canad. J. Math. 9, 371–377 (1957)

    Article  MATH  MathSciNet  Google Scholar 

  24. Schüle, T., Schnörr, C., Weber, S., Hornegger, J.: Discrete tomography by convex-concave regularization and D.C. programming. Discret. Appl. Math. 151, 229–243 (2005)

    Article  MATH  Google Scholar 

  25. Serra, J.: Image Analysis and Mathematical Morphology. Academic Press, New York (1982)

    MATH  Google Scholar 

  26. Siddiqi, K., Pizer, S. (eds.): Medial Representations – Mathematics, Algorithms and Applications. Computational Imaging and Vision, vol. 37. Springer (2008)

  27. Woeginger, G.J.: The reconstruction of polyominoes from their orthogonal projections. Inf. Process. Lett. 77(5–6), 225–229 (2001)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norbert Hantos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hantos, N., Iván, S., Balázs, P. et al. Binary image reconstruction from a small number of projections and the morphological skeleton. Ann Math Artif Intell 75, 195–216 (2015). https://doi.org/10.1007/s10472-014-9440-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10472-014-9440-8

Keywords

Mathematics Subject Classifications (2010)

Navigation