Skip to main content
Log in

Compact representations of all members of an independence system

  • Published:
Annals of Mathematics and Artificial Intelligence Aims and scope Submit manuscript

Abstract

It is well known that (reduced, ordered) binary decision diagrams (BDDs) can sometimes be compact representations of the full solution set of Boolean optimization problems. Recently they have been suggested to be useful as discrete relaxations in integer and constraint programming (Hoda et al. 2010). We show that for every independence system there exists a top-down (i.e., single-pass) construction rule for the BDD. Furthermore, for packing and covering problems on n variables whose bandwidth is bounded by \(\mathcal {O}(\log n)\) the maximum width of the BDD is bounded by \(\mathcal {O}(n)\). We also characterize minimal widths of BDDs representing the set of all solutions to a stable set problem for various basic classes of graphs. Besides implicitly enumerating or counting all solutions and optimizing a class of nonlinear objective functions that includes separable functions, the results can be applied for effective evaluation of generating functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amaldi, E., Bosio, S., Malucelli, F.: Hyperbolic set covering problems with competing ground-set elements. Math. Program. 134(2), 323–348 (2012). doi:10.1007/s10107-010-0431-1

    Article  MathSciNet  MATH  Google Scholar 

  2. Bergman, D., Cire, A.A., van Hoeve, W.J., Hooker, J.N.: Variable ordering for the application of BDDs to the maximum independent set problem. In: Proceedings of the 9th International Conference on Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems, CPAIOR’12, pp. 34–49. Springer-Verlag, Berlin, Heidelberg (2012). doi:10.1007/978-3-642-29828-8_3

    Google Scholar 

  3. Bergman, D., Cire, A.A., van Hoeve, W.J., Yunes, T.: BDD-based heuristics for binary optimization. J. Heuris. 20(2), 211–234 (2014). doi:10.1007/s10732-014-9238-1

    Article  Google Scholar 

  4. Bergman, D., van Hoeve, W.J., Hooker, J.N.: Manipulating MDD relaxations for combinatorial optimization. In: Proceedings of the 8th International Conference on Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems, CPAIOR’11, pp. 20–35. Springer-Verlag, Berlin, Heidelberg (2011)

    MATH  Google Scholar 

  5. Bryant, R.: Graph-based algorithms for boolean function manipulation. IEEE Trans. Comput. C 35(8), 677–691 (1986). doi:10.1109/TC.1986.1676819

    Article  MATH  Google Scholar 

  6. Burkard, R., Ċela, E., Pardalos, P., Pitsoulis, L.: The quadratic assignment problem. In: Du, D.Z., Pardalos, P. (eds.) Handbook of Combinatorial Optimization, vol. 3, pp. chap. 13, pp. 241–337. Kluwer Academic Publishers (1998)

  7. Cuthill, E., McKee, J.: Reducing the bandwidth of sparse symmetric matrices. In: Proceedings of the 1969 24th National Conference, ACM ’69, pp. 157–172. ACM, New York (1969). doi:10.1145/800195.805928

  8. Flajolet, P., Fusy, Ė., Pivoteau, C.: Boltzmann sampling of unlabeled structures. In: Panario, D., Sedgewick, R. (eds.) Proceedings of the Fourth Workshop on Analytic Algorithmics and Combinatorics, ANALCO 2007, pp. 201–211. SIAM, New Orleans (2007). doi:10.1137/1.9781611972979.5

  9. Hamacher, H., Queyranne, M.: K best solutions to combinatorial optimization problems. Ann. Oper. Res. 4(1), 123–143 (1985). doi:10.1007/BF02022039

    Article  MathSciNet  Google Scholar 

  10. Harary, F.: Graph Theory. Addison-Wesley Series in Mathematics, Perseus Books. https://books.google.com/books?id=9nOljWrLzAAC (1994)

  11. Haus, U.U., Köppe, M., Weismantel, R.: A primal all-integer algorithm based on irreducible solutions. Math. Program. Series B 96(2), 205–246 (2003). doi:10.1007/s10107-003-0384-8

    Article  MathSciNet  MATH  Google Scholar 

  12. Henk, M., Köppe, M., Weismantel, R.: Integral decomposition of polyhedra and some applications in mixed integer programming. Math. Program. Series B 94(2–3), 193–206 (2003). doi:10.1007/s10107-002-0315-0

  13. Hoda, S., van Hoeve, W.J., Hooker, J.: A systematic approach to MDD-based constraint programming. In: Cohen, D. (ed.) Principles and Practice of Constraint Programming – CP 2010, Lecture Notes in Computer Science, vol. 6308, pp. 266–280. Springer, Berlin Heidelberg (2010). doi:10.1007/978-3-642-15396-9_23

    Google Scholar 

  14. Johnson, D.S., Trick, M.A. (eds.): Clique, Coloring, and Satisfiability: Second DIMACS Implementation Challenge, DIMACS, vol. 26. American Mathematical Society. http://dimacs.rutgers.edu/Volumes/Vol26.html (1996)

  15. Lee, C.Y.: Representation of switching circuits by binary-decision programs. Bell Syst. Tech. J. 38(4), 985–999 (1959)

    Article  MathSciNet  Google Scholar 

  16. Meinel, C., Theobald, T.: Algorithms and Data Structures in VLSI Design: OBDD – Foundations and Applications. Springer-Verlag New York, Inc., Secaucus (1998)

    Book  MATH  Google Scholar 

  17. Resende, M.G.C.: Steiner triple covering problem instances. Available at http://www2.research.att.com/mgcr/data/index.html

  18. SBCL community: Sbcl 1.1.5, an implementation of ANSI Common Lisp. Available as free software from http://www.sbcl.org

  19. Schrijver, A.: Combinatorial Optimization. Springer, Berlin, Germany (2002)

    MATH  Google Scholar 

  20. Sekine, K., Imai, H., Tani, S.: Computing the Tutte polynomial of a graph of moderate size. In: Staples, J., Eades, P., Katoh, N., Moffat, A. (eds.) Algorithms and Computations, Lecture Notes in Computer Science, vol. 1004, pp. 224–233. Springer, Berlin Heidelberg (1995). doi:10.1007/BFb0015427

    Google Scholar 

  21. Yao, P.: Graph 2-isomorphism is NP-complete. Inf. Process. Lett. 9(2), 68–72 (1979). doi:10.1016/0020-0190(79)90130-3

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Utz-Uwe Haus.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haus, UU., Michini, C. Compact representations of all members of an independence system. Ann Math Artif Intell 79, 145–162 (2017). https://doi.org/10.1007/s10472-016-9496-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10472-016-9496-8

Keywords

Mathematics Subject Classifications (2010)

Navigation