Skip to main content
Log in

Meeting a deadline: shortest paths on stochastic directed acyclic graphs with information gathering

  • Published:
Annals of Mathematics and Artificial Intelligence Aims and scope Submit manuscript

Abstract

We consider the problem of an agent traversing a directed graph with the objective of maximizing the probability of reaching a goal node before a given deadline. Only the probability of the travel times of edges is known to the agent. The agent must balance between traversal actions towards the goal, and delays due to actions improving information about graph edge travel times. We describe the relationship of the problem to the more general partially observable Markov decision process. Further, we show that if edge travel times are independent and the underlying directed graph is acyclic, a closed loop solution can be computed. The solution specifies whether to execute a traversal or information-gathering action as a function of the current node, the time remaining until the deadline, and the information about edge travel times. We present results from two case studies, quantifying the usefulness of information-gathering as opposed to applying only traversal actions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Araya-López, M., Buffet, O., Thomas, V., Charpillet, F.: A POMDP extension with belief-dependent rewards. In: Lafferty, J., Williams, C., Shawe-Taylor, J., Zemel, R., Culotta, A. (eds.) Advances in Neural Information Processing Systems 23, pp. 64–72. Vancouver, Canada (2010)

  2. Bnaya, Z., Felner, A., Shimony, S.E.: Canadian traveler problem with remote sensing. In: Proc. Intl. Joint Conf. on Artificial Intelligence (IJCAI), pp. 437–442 (2009)

  3. Bonet, B.: Deterministic POMDPs revisited. In: Proc. of the 25th Conference on Uncertainty in Artificial Intelligence (UAI), pp. 59–66. Montreal, Canada (2009)

  4. Bonet, B., Geffner, H.: Solving POMDPs: RTDP-Bel vs. point-based algorithms. In: Proc. Intl. Joint Conf. on Artificial Intelligence (IJCAI), pp. 1641–1646 (2009)

  5. Chen, A., Ji, Z.: Path finding under uncertainty. J. Adv. Transp. 39(1), 19–37 (2005)

    Article  Google Scholar 

  6. Chen, B.Y., Lam, W.H., Sumalee, A., Li, Z.: Reliable shortest path finding in stochastic networks with spatial correlated link travel times. Int. J. Geogr. Inf. Sci. 26(2), 365–386 (2012). doi:10.1080/13658816.2011.598133

    Article  Google Scholar 

  7. Dibangoye, J., Shani, G., Chaib-draa, B., Mouaddib, A.I.: Topological order planner for POMDPs. In: Proceedings of the 21st International Joint Conference on Artifical Intelligence, pp. 1684–1689 (2009)

  8. Dreyfus, S.E.: An appraisal of some shortest-path algorithms. Oper. Res. 17(3), 395–412 (1969). doi:10.1287/opre.17.3.395

    Article  MATH  Google Scholar 

  9. Fan, Y., Kalaba, R., Moore J.E.I.: Arriving on time. J. Optim. Theory Appl. 127(3), 497–513 (2005). doi:10.1007/s10957-005-7498-5

    Article  MathSciNet  MATH  Google Scholar 

  10. Fan, Y., Nie, Y.: Optimal routing for maximizing the travel time reliability. Networks and Spatial Economics 6(3-4), 333–344 (2006). doi:10.1007/s11067-006-9287-6

    Article  MathSciNet  MATH  Google Scholar 

  11. Frank, H.: Shortest paths in probabilistic graphs. Oper. Res. 17(4), 583–599 (1969). doi:10.1287/opre.17.4.583

    Article  MathSciNet  MATH  Google Scholar 

  12. French, S., Insua, D.R. 2: Statistical decision theory, Kendall’s Library of Statistics, vol. 9. Wiley (2000)

  13. Fu, L.: An adaptive routing algorithm for in-vehicle route guidance systems with real-time information. Transp. Res. B Methodol. 35, 749–765 (2001). doi:10.1016/S0191-2615(00)00019-9

    Article  Google Scholar 

  14. Fu, L., Rilett, L.: Expected shortest paths in dynamic and stochastic traffic networks. Transp. Res. B Methodol. 32(7), 499–516 (1998). doi:10.1016/S0191-2615(98)00016-2

    Article  Google Scholar 

  15. Gao, S., Chabini, I.: Optimal routing policy problems in stochastic time-dependent networks. Transp. Res. B Methodol. 40(2), 93–122 (2006). doi:10.1016/j.trb.2005.02.001

    Article  Google Scholar 

  16. Gao, S.: Real-time traveler information for optimal adaptive routing in stochastic time-dependent networks. Transp. Res. Part C: Emerging Technologies 21, 196–213 (2012). doi:10.1016/j.trc.2011.09.007

    Article  Google Scholar 

  17. Hall, R.W.: The fastest path through a network with random time-dependent travel times. Transplant. Sci. 20(3), 182–188 (1986). doi:10.1287/trsc.20.3.182

    Article  MathSciNet  Google Scholar 

  18. Huang, H., Gao, S.: Optimal paths in dynamic networks with dependent random link travel times. Transp. Res. B Methodol. 46, 579–598 (2012). doi:10.1016/j.trb.2012.01.005

    Article  Google Scholar 

  19. Kaelbling, L., Littman, M., Cassandra, A.: Planning and acting in partially observable stochastic domains. Artif. Intell. 101(1-2), 99–134 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lauri, M., Ritala, R.: Path planning in dynamic environments with the partially observable canadian traveller’s problem. In: Proceedings of the 1st ICAPS Workshop on Planning and Robotics (PlanRob), pp. 89–95 (2013)

  21. LaValle, S.M.: Planning algorithms. Cambridge University Press (2006)

  22. Lim, S., Sommer, C., Nikolova, E., Rus, D.: Practical route planning under delay uncertainty: Stochastic shortest path queries. In: Proceedings of Robotics: Science and Systems. Sydney, Australia (2012)

  23. Loui, R.P.: Optimal paths in graphs with stochastic or multidimensional weights. Commun. ACM 26(9), 670–676 (1983). doi:10.1145/358172.358406

    Article  MathSciNet  MATH  Google Scholar 

  24. Melin, J., Lauri, M., Kolu, A., Koljonen, J., Ritala, R.: Cooperative sensing and path planning in a multi-vehicle environment (2015)

    Google Scholar 

  25. Miller-Hooks, E.: Adaptive least-expected time paths in stochastic, time-varying transportation and data networks. Networks 37(1), 35–52 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  26. Miller-Hooks, E., Mahmassani, H.S.: Least expected time paths in stochastic, time-varying transportation networks. Transplant. Sci. 34(2), 198–215 (2000)

    Article  MATH  Google Scholar 

  27. Murphy, K.P.: Machine Learning: A Probabilistic Perspective. The MIT Press (2012)

  28. Murthy, I., Sarkar, S.: Stochastic shortest path problems with piecewise-linear concave utility functions. Manag. Sci. 44(11-part-2), S125–S136 (1998). doi:10.1287/mnsc.44.11.S125

    Article  MATH  Google Scholar 

  29. von Neumann, J., Morgenstern, O.: Theory of games and economic behavior. Princeton University Press, Princeton (1947)

    MATH  Google Scholar 

  30. Nie, Y., Fan, Y.: Arriving-on-time problem: discrete algorithm that ensures convergence. Transp. Res. Record: J. Transp. Res. Board 1964, 193–200 (2006)

    Article  Google Scholar 

  31. Nie, Y.M., Wu, X.: Shortest path problem considering on-time arrival probability. Transp. Res. B Methodol. 43(6), 597–613 (2009). doi:10.1016/j.trb.2009.01.008

    Article  Google Scholar 

  32. Nie, Y.M., Wu, X., Dillenburg, J.F., Nelson, P.C.: Reliable route guidance: A case study from Chicago. Transp. Res. A Policy Pract. 46(2), 403–419 (2012). doi:10.1016/j.tra.2011.10.008

    Article  Google Scholar 

  33. Nikolova, E.: Approximation algorithms for reliable stochastic combinatorial optimization. In: Lecture Notes in Computer Science, vol. 6302, pp. 338–351. doi:10.1007/978-3-642-15369-3_26 (2010)

  34. Nikolova, E., Karger, D.R.: Route planning under uncertainty: The canadian traveller problem. In: AAAI, pp. 969–974 (2008)

  35. Ong, S.C.W., Png, S.W., Hsu, D., Lee, W.: Planning under uncertainty for robotic tasks with mixed observability. Int. J. Robot. Res. 29(8), 1053–1068 (2010). doi:10.1177/0278364910369861

    Article  Google Scholar 

  36. Pan, Y., Sun, L., Ge, M.: Finding reliable shortest path in stochastic time-dependent network. Procedia - Social and Behavioral Sciences 96, 451–460 (2013). doi:10.1016/j.sbspro.2013.08.053

    Article  Google Scholar 

  37. Papadimitriou, C.H., Tsitsiklis, J.N.: The complexity of markov decision processes. Math. Oper. Res. 12, 441–450 (1987). doi:10.1287/moor.12.3.441

    Article  MathSciNet  MATH  Google Scholar 

  38. Papadimitriou, C.H., Yannakakis, M.: Shortest paths without a map. Theor. Comput. Sci. 84(1), 127–150 (1991). doi:10.1016/0304-3975(91)90263-2

    Article  MathSciNet  MATH  Google Scholar 

  39. Polychronopoulos, G., Tsitsiklis, J.: Stochastic shortest path problems with recourse. Networks 27(2), 133–143 (1996)

  40. Porta, J., Vlassis, N., Spaan, M., Poupart, P.: Point-based value iteration for continuous POMDPs. J. Mach. Learn. Res. 7, 2329–2367 (2006)

    MathSciNet  MATH  Google Scholar 

  41. Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Programming. Wiley, New York (1994)

    Book  MATH  Google Scholar 

  42. Samaranayake, S., Blandin, S., Bayen, A.: A tractable class of algorithms for reliable routing in stochastic networks. Transportation Research Part C: Emerging Technologies 20(1), 199–217 (2012). doi:10.1016/j.trc.2011.05.009

    Article  MATH  Google Scholar 

  43. Spaan, M.T.J., Veiga, T.S., Lima, P.U.: Decision-theoretic planning under uncertainty with information rewards for active cooperative perception. Auton. Agent. Multi-Agent Syst. 29(6), 1157–1185 (2015). doi:10.1007/s10458-014-9279-8

    Article  Google Scholar 

  44. Stuart, A., Ord, K.J.: Kendall’s Advanced Theory of Statistics, vol. 1. Distribution theory. Arnold, London (1994)

  45. Tippett, L.H.C.: On the extreme individuals and the range of samples taken from a normal population. Biometrika 17(3/4), 364 (1925). doi:10.2307/2332087

    Article  MATH  Google Scholar 

  46. Zockaie, A., Nie, Y., Mahmassani, H.: Simulation-based method for finding minimum travel time budget paths in stochastic networks with correlated link times. Transp. Res. Record: J. Transp. Res. Board 2467, 140–148 (2014). doi:10.3141/2467-15

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikko Lauri.

Additional information

This work was funded by the Academy of Finland, project “Optimal operation of observation subsystems in autonomous mobile machines”, which is gratefully acknowledged.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lauri, M., Ropponen, A. & Ritala, R. Meeting a deadline: shortest paths on stochastic directed acyclic graphs with information gathering. Ann Math Artif Intell 79, 337–370 (2017). https://doi.org/10.1007/s10472-016-9527-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10472-016-9527-5

Keywords

Mathematics Subject Classification (2010)

Navigation