Skip to main content
Log in

Hyper-arc consistency of polynomial constraints over finite domains using the modified Bernstein form

  • Published:
Annals of Mathematics and Artificial Intelligence Aims and scope Submit manuscript

Abstract

This paper describes an algorithm to enforce hyper-arc consistency of polynomial constraints defined over finite domains. First, the paper describes the language of so called polynomial constraints over finite domains, and it introduces a canonical form for such constraints. Then, the canonical form is used to transform the problem of testing the satisfiability of a constraint in a box into the problem of studying the sign of a related polynomial function in the same box, a problem which is effectively solved by using the modified Bernstein form of polynomials. The modified Bernstein form of polynomials is briefly discussed, and the proposed hyper-arc consistency algorithm is finally detailed. The proposed algorithm is a subdivision procedure which, starting from an initial approximation of the domains of variables, removes values from domains to enforce hyper-arc consistency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Apt, K.: Principles of constraint programming. Cambridge University Press, Cambridge, UK (2003)

    Book  MATH  Google Scholar 

  2. Bergenti, F., Monica, S., Rossi, G.: Polynomial constraint solving over finite domains with the modified Bernstein form. In: Fiorentini, C., Momigliano, A. (eds.) Proceedings 31st Italian Conference on Computational Logic, CEUR Workshop Proceedings, vol. 1645, pp. 118-131. RWTH Aachen (2016)

  3. Bergenti, F., Monica, S., Rossi, G.: A subdivision approach to the solution of polynomial constraints over finite domains using the modified Bernstein form. In: Adorni, G., Cagnoni, S., Gori, M., Maratea, M. (eds.) AI*IA 2016 Advances in Artificial Intelligence, Lecture Notes in Computer Science, vol. 10037, pp. 179-191. Springer International Publishing (2016)

  4. Bernstein, S.N.: Démonstration du théorème de Weierstrass fondée sur le calcul des probabilités. Communications de la Société Mathématique de Kharkov 2:XIII(1), 1–2 (1912)

    MATH  Google Scholar 

  5. Borralleras, C., Lucas, S., Oliveras, A., Rodríguez-Carbonell, E., Rubio, A.: SAT modulo linear arithmetic for solving polynomial constraints. J. Autom. Reason. 48(1), 107–131 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Davenport, J.H., Siret, Y., Tournier, E.: Computer algebra 2nd edn.: Systems and algorithms for algebraic computation. Academic Press Professional, CA, USA (1993)

    MATH  Google Scholar 

  7. Farouki, R.T.: The Bernstein polynomial basis: A centennial retrospective. Computer Aided Geometric Design 29(6), 379–419 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. Farouki, R.T., Rajan, V.T.: Algorithms for polynomials in Bernstein form. Comput.-Aided Geom. Des. 5(1), 1–26 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  9. Garloff, J.: Convergent bounds for the range of multivariate polynomials. In: Nickel, K. (ed.) Interval Mathematics 1985, Lecture Notes in Computer Science, vol. 212, pp. 37–56. Springer International Publishing (1986)

  10. Garloff, J.: The Bernstein algorithm. Interval Comput. 2, 154–168 (1993)

    MathSciNet  MATH  Google Scholar 

  11. Garloff, J., Smith, A.P.: Solution of systems of polynomial equations by using Bernstein expansion. In: Alefeld, G., Rohn, J., Rump, S., Yamamoto, T. (eds.) Symbolic Algebraic Methods and Verification Methods, pp. 87-97. Springer, Vienna (2001)

    Chapter  Google Scholar 

  12. von zur Gathen, J., Gerhard, J.: Modern computer algebra, 2nd edn. Cambridge University Press, Cambridge, UK (2003)

    MATH  Google Scholar 

  13. Grimstad, B., Sandnes, A.: Global optimization with spline constraints: A new branch-and-bound method based on B-splines. J. Glob. Optim. 65(3), 401–439 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  14. Lorentz, G.G.: Bernstein polynomials. University of Toronto Press, Toronto, CA (1953)

    MATH  Google Scholar 

  15. Mourrain, B., Pavone, J.: Subdivision methods for solving polynomial equations. J. Symb. Comput. 44(3), 292–306 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Nataraj, P., Arounassalame, M.: A new subdivision algorithm for the Bernstein polynomial approach to global optimization. Int. J. Autom. Comput. 4(4), 342–352 (2007)

    Article  Google Scholar 

  17. Patil, B.V., Nataraj, P.S.V., Bhartiya, S.: Global optimization of mixed-integer nonlinear (polynomial) programming problems: The Bernstein polynomial approach. Computing 94(2), 325–343 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ray, S., Nataraj, P.: An efficient algorithm for range computation of polynomials using the Bernstein form. J. Glob. Optim. 45, 403–426 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Rossi, F., Beek, P.V., Walsh, T.: Handbook of constraint programming. Elsevier, NY, USA (2006)

    MATH  Google Scholar 

  20. Sánchez-Reyes, J.: Algebraic manipulation in the Bernstein form made simple via convolutions. Comput.-Aided Des. 35, 959–967 (2003)

    Article  MATH  Google Scholar 

  21. Steffens, K.G.: The history of approximation theory: From euler to bernstein. Birkhäuser, MA, USA (2006)

    MATH  Google Scholar 

  22. Triska, M.: The finite domain constraint solver of SWI-Prolog. In: Schrijvers, T., Thiemann, P. (eds.) Functional and Logic Programming, Lecture Notes in Computer Science, vol. 7294, pp. 307-316. Springer, Berlin Heidelberg (2012)

    Google Scholar 

  23. Wielemaker, J., Schrijvers, T., Triska, M., Lager, T.: SWI-Prolog. Theory Pract. Log. Programm. 12(1–2), 67–96 (2012)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Federico Bergenti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bergenti, F., Monica, S. Hyper-arc consistency of polynomial constraints over finite domains using the modified Bernstein form. Ann Math Artif Intell 80, 131–151 (2017). https://doi.org/10.1007/s10472-017-9544-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10472-017-9544-z

Keywords

Mathematics Subject Classification (2010)

Navigation