Abstract
Constructions are central to the methodology of geometry presented in the Elements. This theory therefore poses a unique challenge to those concerned with the practice of constructive mathematics: can the Elements be faithfully captured in a modern constructive framework? In this paper, we outline our implementation of Euclidean geometry based on straightedge and compass constructions in the intuitionistic type theory of the Nuprl proof assistant. A result of our intuitionistic treatment of Euclidean geometry is a proof of the second proposition from Book I of the Elements in its full generality; a result that differs from other formally constructive accounts of Euclidean geometry. Our formalization of the straightedge and compass utilizes a predicate for orientation, which enables a concise and intuitive expression of Euclid’s constructions.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Mäenpää, P., von Plato, J.: The logic of Euclidean construction procedures. Acta Philos. Fenn 49, 275–293 (1990)
Heyting, A.: Axioms for intuitionistic plane affine geometry. Studies in Logic and the Foundations of Mathematics 27, 160–173 (1959). [Online]. Available: http://linkinghub.elsevier.com/retrieve/pii/S0049237X09700266
van Dalen, D.: Outside as a primitive notion in constructive projective geometry. Geom. Dedicata. 60(1), 107–111 (1996). [Online]. Available: http://link.springer.com/10.1007/BF00150870
Dalen, D.V.: Extension problems in intuitionistic plane projective geometry. [Online]. Available: https://www.illc.uva.nl/Research/Publications/Dissertations/HDS-15-Dirk-van-Dalen.text.pdf
Mandelkern, M.: A constructive real projective plane. J. Geom. 107(1), 19–60 (2016). [Online]. Available: https://doi.org/10.1007/s00022-015-0272-4
von Plato, J.: The axioms of constructive geometry. Ann. Pure Appl. Logic 76(2), 169–200 (1995). [Online]. Available: https://www.sciencedirect.com/science/article/pii/0168007295000052
von Plato, J.: A constructive theory of ordered affine geometry. Indag. Math. 9(4), 549–562 (1998). [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0019357798800347
Beeson, M.: Constructive geometry. In: Proceedings of the 10th Asian Logic Conference, pp. 19–84 (2009). [Online]. Available: http://www.worldscientific.com/doi/abs/10.1142/9789814293020_0002
Beeson, M.: Brouwer and Euclid. Indag. Math. 29(1), 483–533 (2018). [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0019357717300447
Constable, R.L., Allen, S.F., Bromley, H.M., Cleaveland, W.R., Cremer, J.F., Harper, R.W., Howe, D.J., Knoblock, T.B., Mendler, N.P., Panangaden, P., Sasaki, J.T., Smith, S.F.: Implementing mathematics with the nuprl proof development system. [Online]. Available: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.55.4216 (1985)
Constable, R.L.: Programs as proofs: a synopsis. Inf. Process. Lett. 16(3), 105–112 (1983). [Online]. Available: https://www.sciencedirect.com/science/article/pii/0020019083900601
Vesley, R.: Constructivity in geometry. History and Philosophy of Logic 20 (3-4), 291–294 (1999). [Online]. Available: http://www.tandfonline.com/doi/abs/10.1080/01445349950044206
Heyting, A.: Zur intuitionistischen axiomatik der projektiven geometrie. Math. Ann. 98(1), 491–538 (1928). [Online]. Available: http://link.springer.com/10.1007/BF01451605
Bishop, E.: Foundations of Constructive Analysis. McGraw-Hill, New York (1967)
Knuth, D.E.: Axioms and Hulls. Springer, Berlin (1992). [Online]. Available: https://books.google.com/books/about/Axioms_and_hulls.html?id=vghRAAAAMAAJ
Lombard M., Vesley, R.: A common axiom set for classical and intuitionistic plane geometry. Ann. Pure Appl. Logic 95(1-3), 229–255 (1998). [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0168007298000177
Beeson, M.: Logic of Ruler and Compass Constructions, pp. 46–55. Springer, Heidelberg (2012). [Online]. Available: http://link.springer.com/10.1007/978-3-642-30870-3_6
Beeson, M.: A constructive version of Tarski’s geometry. Ann. Pure Appl. Logic 166 (11), 1199–1273 (2015). [Online]. Available: http://linkinghub.elsevier.com/retrieve/pii/S0168007215000718
Sernaker, S., Constable, R.L.: Formal exploration of geometry. [Online]. Available: http://www.nuprl.org/MathLibrary/geometry/ (2016)
Schwabhäuser, W., Szmielew, W., Tarski, A.: Metamathematische Methoden in der Geometrie. Springer, Berlin (1983). [Online]. Available: http://link.springer.com/10.1007/978-3-642-69418-9
Boutry, P., Gries, C., Narboux, J., Schreck, P.: Parallel postulates and continuity axioms: a mechanized study in intuitionistic logic using Coq. Journal of Automated Reasoning, pp. 1–68. [Online]. Available: http://link.springer.com/10.1007/s10817-017-9422-8 (2017)
Narboux, J.: Mechanical theorem proving in Tarski’s geometry. In: Automated Deduction in Geometry, pp. 139–156. Springer, Berlin (2006). [Online]. Available: http://link.springer.com/10.1007/978-3-540-77356-6_9
Beeson M., Wos, L.: OTTER proofs in Tarskian geometry. In: Demri, S., Kapur, D., Weidenbach, C. (eds.) Automated Reasoning, pp. 495–510. Springer International Publishing, Cham (2014)
Meikle L.I., Fleuriot, J.D.: Formalizing Hilbert’s Grundlagen in Isabelle/Isar. [Online]. Available: http://link.springer.com/10.1007/10930755_21 (2003)
Calderón, G.: Formalizing constructive projective geometry in Agda. In: LSFA 2017: the 12th Workshop on Logical and Semantic Frameworks, with Applications, Brasília, pp. 150–165 (2017). [Online]. Available: http://lsfa2017.cic.unb.br/LSFA2017.pdf
Kahn, G.: Constructive geometry according to Jan von Plato. V5,10 (1995)
Constable, R.L.: The semantics of evidence. Cornell University, Ithaca, NY, Tech Rep. (1985)
Wadler, P.: Propositions as types. Commun. ACM 58(12), 75–84 (2015). [Online]. Available: http://doi.acm.org/10.1145/2699407
Avigad, J., Dean, E., Mumma, J.: A formal system for Euclid’ s elements. The Review of Symbolic Logic 2(4). [Online]. Available: http://repository.cmu.edu/philosophy (2009)
Heath, T.: The Thirteen Books of Euclid’s Elements. Dover, New York (1956)
Allen, S., Bickford, M., Constable, R., Eaton, R., Kreitz, C., Lorigo, L., Moran, E.: Innovations in computational type theory using Nuprl. J. Appl. Log. 4(4), 428–469 (2006). [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1570868305000704
Tarski, A., Givant, S.: Tarski’s system of geometry. Bull. Symb. Log. 5(2), 175–214 (1999). [Online]. Available: https://www.cambridge.org/core/product/identifier/S1079898600007010/type/journal_article
Bickford, M.: Constructive analysis and experimental mathematics using the Nuprl proof assistant. [Online]. Available: http://www.nuprl.org/documents/Bickford/reals.pdf (2016)
Author information
Authors and Affiliations
Corresponding author
Additional information
This material is based upon work supported by the National Science Foundation under Grant No.1650069.
Rights and permissions
About this article
Cite this article
Kellison, A., Bickford, M. & Constable, R. Implementing Euclid’s straightedge and compass constructions in type theory. Ann Math Artif Intell 85, 175–192 (2019). https://doi.org/10.1007/s10472-018-9603-0
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10472-018-9603-0