Skip to main content

Implementing Euclid’s straightedge and compass constructions in type theory

  • Published:
Annals of Mathematics and Artificial Intelligence Aims and scope Submit manuscript

Abstract

Constructions are central to the methodology of geometry presented in the Elements. This theory therefore poses a unique challenge to those concerned with the practice of constructive mathematics: can the Elements be faithfully captured in a modern constructive framework? In this paper, we outline our implementation of Euclidean geometry based on straightedge and compass constructions in the intuitionistic type theory of the Nuprl proof assistant. A result of our intuitionistic treatment of Euclidean geometry is a proof of the second proposition from Book I of the Elements in its full generality; a result that differs from other formally constructive accounts of Euclidean geometry. Our formalization of the straightedge and compass utilizes a predicate for orientation, which enables a concise and intuitive expression of Euclid’s constructions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Mäenpää, P., von Plato, J.: The logic of Euclidean construction procedures. Acta Philos. Fenn 49, 275–293 (1990)

    MATH  Google Scholar 

  2. Heyting, A.: Axioms for intuitionistic plane affine geometry. Studies in Logic and the Foundations of Mathematics 27, 160–173 (1959). [Online]. Available: http://linkinghub.elsevier.com/retrieve/pii/S0049237X09700266

    Article  MathSciNet  MATH  Google Scholar 

  3. van Dalen, D.: Outside as a primitive notion in constructive projective geometry. Geom. Dedicata. 60(1), 107–111 (1996). [Online]. Available: http://link.springer.com/10.1007/BF00150870

    Article  MathSciNet  MATH  Google Scholar 

  4. Dalen, D.V.: Extension problems in intuitionistic plane projective geometry. [Online]. Available: https://www.illc.uva.nl/Research/Publications/Dissertations/HDS-15-Dirk-van-Dalen.text.pdf

  5. Mandelkern, M.: A constructive real projective plane. J. Geom. 107(1), 19–60 (2016). [Online]. Available: https://doi.org/10.1007/s00022-015-0272-4

    Article  MathSciNet  MATH  Google Scholar 

  6. von Plato, J.: The axioms of constructive geometry. Ann. Pure Appl. Logic 76(2), 169–200 (1995). [Online]. Available: https://www.sciencedirect.com/science/article/pii/0168007295000052

    Article  MathSciNet  MATH  Google Scholar 

  7. von Plato, J.: A constructive theory of ordered affine geometry. Indag. Math. 9(4), 549–562 (1998). [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0019357798800347

    Article  MathSciNet  MATH  Google Scholar 

  8. Beeson, M.: Constructive geometry. In: Proceedings of the 10th Asian Logic Conference, pp. 19–84 (2009). [Online]. Available: http://www.worldscientific.com/doi/abs/10.1142/9789814293020_0002

  9. Beeson, M.: Brouwer and Euclid. Indag. Math. 29(1), 483–533 (2018). [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0019357717300447

    Article  MathSciNet  MATH  Google Scholar 

  10. Constable, R.L., Allen, S.F., Bromley, H.M., Cleaveland, W.R., Cremer, J.F., Harper, R.W., Howe, D.J., Knoblock, T.B., Mendler, N.P., Panangaden, P., Sasaki, J.T., Smith, S.F.: Implementing mathematics with the nuprl proof development system. [Online]. Available: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.55.4216 (1985)

  11. Constable, R.L.: Programs as proofs: a synopsis. Inf. Process. Lett. 16(3), 105–112 (1983). [Online]. Available: https://www.sciencedirect.com/science/article/pii/0020019083900601

    Article  MathSciNet  MATH  Google Scholar 

  12. Vesley, R.: Constructivity in geometry. History and Philosophy of Logic 20 (3-4), 291–294 (1999). [Online]. Available: http://www.tandfonline.com/doi/abs/10.1080/01445349950044206

    Article  MathSciNet  MATH  Google Scholar 

  13. Heyting, A.: Zur intuitionistischen axiomatik der projektiven geometrie. Math. Ann. 98(1), 491–538 (1928). [Online]. Available: http://link.springer.com/10.1007/BF01451605

    Article  MathSciNet  MATH  Google Scholar 

  14. Bishop, E.: Foundations of Constructive Analysis. McGraw-Hill, New York (1967)

    MATH  Google Scholar 

  15. Knuth, D.E.: Axioms and Hulls. Springer, Berlin (1992). [Online]. Available: https://books.google.com/books/about/Axioms_and_hulls.html?id=vghRAAAAMAAJ

    Book  MATH  Google Scholar 

  16. Lombard M., Vesley, R.: A common axiom set for classical and intuitionistic plane geometry. Ann. Pure Appl. Logic 95(1-3), 229–255 (1998). [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0168007298000177

    Article  MathSciNet  MATH  Google Scholar 

  17. Beeson, M.: Logic of Ruler and Compass Constructions, pp. 46–55. Springer, Heidelberg (2012). [Online]. Available: http://link.springer.com/10.1007/978-3-642-30870-3_6

    MATH  Google Scholar 

  18. Beeson, M.: A constructive version of Tarski’s geometry. Ann. Pure Appl. Logic 166 (11), 1199–1273 (2015). [Online]. Available: http://linkinghub.elsevier.com/retrieve/pii/S0168007215000718

    Article  MathSciNet  MATH  Google Scholar 

  19. Sernaker, S., Constable, R.L.: Formal exploration of geometry. [Online]. Available: http://www.nuprl.org/MathLibrary/geometry/ (2016)

  20. Schwabhäuser, W., Szmielew, W., Tarski, A.: Metamathematische Methoden in der Geometrie. Springer, Berlin (1983). [Online]. Available: http://link.springer.com/10.1007/978-3-642-69418-9

    Book  MATH  Google Scholar 

  21. Boutry, P., Gries, C., Narboux, J., Schreck, P.: Parallel postulates and continuity axioms: a mechanized study in intuitionistic logic using Coq. Journal of Automated Reasoning, pp. 1–68. [Online]. Available: http://link.springer.com/10.1007/s10817-017-9422-8 (2017)

  22. Narboux, J.: Mechanical theorem proving in Tarski’s geometry. In: Automated Deduction in Geometry, pp. 139–156. Springer, Berlin (2006). [Online]. Available: http://link.springer.com/10.1007/978-3-540-77356-6_9

  23. Beeson M., Wos, L.: OTTER proofs in Tarskian geometry. In: Demri, S., Kapur, D., Weidenbach, C. (eds.) Automated Reasoning, pp. 495–510. Springer International Publishing, Cham (2014)

  24. Meikle L.I., Fleuriot, J.D.: Formalizing Hilbert’s Grundlagen in Isabelle/Isar. [Online]. Available: http://link.springer.com/10.1007/10930755_21 (2003)

  25. Calderón, G.: Formalizing constructive projective geometry in Agda. In: LSFA 2017: the 12th Workshop on Logical and Semantic Frameworks, with Applications, Brasília, pp. 150–165 (2017). [Online]. Available: http://lsfa2017.cic.unb.br/LSFA2017.pdf

  26. Kahn, G.: Constructive geometry according to Jan von Plato. V5,10 (1995)

  27. Constable, R.L.: The semantics of evidence. Cornell University, Ithaca, NY, Tech Rep. (1985)

  28. Wadler, P.: Propositions as types. Commun. ACM 58(12), 75–84 (2015). [Online]. Available: http://doi.acm.org/10.1145/2699407

    Article  Google Scholar 

  29. Avigad, J., Dean, E., Mumma, J.: A formal system for Euclid’ s elements. The Review of Symbolic Logic 2(4). [Online]. Available: http://repository.cmu.edu/philosophy (2009)

  30. Heath, T.: The Thirteen Books of Euclid’s Elements. Dover, New York (1956)

    MATH  Google Scholar 

  31. Allen, S., Bickford, M., Constable, R., Eaton, R., Kreitz, C., Lorigo, L., Moran, E.: Innovations in computational type theory using Nuprl. J. Appl. Log. 4(4), 428–469 (2006). [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1570868305000704

    Article  MathSciNet  MATH  Google Scholar 

  32. Tarski, A., Givant, S.: Tarski’s system of geometry. Bull. Symb. Log. 5(2), 175–214 (1999). [Online]. Available: https://www.cambridge.org/core/product/identifier/S1079898600007010/type/journal_article

    Article  MathSciNet  MATH  Google Scholar 

  33. Bickford, M.: Constructive analysis and experimental mathematics using the Nuprl proof assistant. [Online]. Available: http://www.nuprl.org/documents/Bickford/reals.pdf (2016)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ariel Kellison.

Additional information

This material is based upon work supported by the National Science Foundation under Grant No.1650069.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kellison, A., Bickford, M. & Constable, R. Implementing Euclid’s straightedge and compass constructions in type theory. Ann Math Artif Intell 85, 175–192 (2019). https://doi.org/10.1007/s10472-018-9603-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10472-018-9603-0

Keywords

Mathematics Subject Classification (2010)