Skip to main content
Log in

Checking inference-proofness of attribute-disjoint and duplicate-preserving fragmentations

  • Published:
Annals of Mathematics and Artificial Intelligence Aims and scope Submit manuscript

Abstract

The transmission of own and partly confidential data to another agent comes along with the risk of enabling the receiver to infer information he is not entitled to learn. We consider a specific countermeasure against unwanted inferences about associations between data values whose combination of attributes are declared to be sensitive. This countermeasure fragments a relation instance into attribute-disjoint and duplicate-preserving projections such that no sensitive attribute combination is contained in any projection. Unfortunately, the intended goal of inference-proofness will not always be accomplished. Inferences might be based on combinatorial reasoning, since duplicate-preservation implies that the frequencies of value associations in visible fragments equals those in the original relation instance. In addition, the receiver might exploit entailment reasoning about functional dependencies, numerical dependencies and tuple-generating dependencies, as presumably known from the underlying database schema. We investigate possible interferences of combinatorial reasoning and entailment reasoning and identify basic conditions for a fragmentation to violate inference-proofness. Moreover, we outline a comprehensive method to effectively check the inference-proofness of a given fragmentation and we experimentally evaluate the computational efficiency of a partial prototype implementation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley, Reading (1995)

    MATH  Google Scholar 

  2. Aggarwal, G., Bawa, M., Ganesan, P., Garcia-Molina, H., Kenthapadi, K., Motwani, R., Srivastava, U., Thomas, D., Xu, Y.: Two can keep a secret: a distributed architecture for secure database services. In: 2nd Biennial Conference on Innovative Data Systems Research, CIDR 2005. Online Proceedings, pp 186–199 (2005)

  3. Armstrong, W.W.: Dependency structures of data base relationships. In: IFIP Congress, pp 580–583 (1974)

  4. Beeri, C., Vardi, M.Y.: Formal systems for tuple and equality generating dependencies. SIAM J. Comput. 13(1), 76–98 (1984). https://doi.org/10.1137/0213006

    Article  MathSciNet  MATH  Google Scholar 

  5. Benczúr, A., Kiss, A., Márkus, T.: On a general class of data dependencies in the relational model and its implication problem. Comput. Math. Applic. 21(1), 1–11 (1991)

    Article  Google Scholar 

  6. Biskup, J.: Selected results and related issues of confidentiality-preserving controlled interaction execution. In: Gyssens, M., Simari, G.R. (eds.) 9th International Symposium on Foundations of Information and Knowledge Systems, FoIKS 2016, Lecture Notes in Computer Science, vol. 9616, pp 211–234. Springer (2016)

  7. Biskup, J., Bonatti, P.A., Galdi, C., Sauro, L.: Optimality and complexity of inference-proof data filtering and CQE. In: Kutylowski, M., Vaidya, J. (eds.) 19th European Symposium on Research in Computer Security, ESORICS 2014, Part II, Lecture Notes in Computer Science, vol. 8713, pp 165–181. Springer (2014)

  8. Biskup, J., Bonatti, P.A., Galdi, C., Sauro, L.: Inference-proof data filtering for a probabilistic setting. In: Brewster, C., Cheatham, M., d’Aquin, M., Decker, S., Kirrane, S. (eds.) 5th Workshop on Society, Privacy and the Semantic Web – Policy and Technology, PrivOn2017, CEUR Workshop Proceedings. CEUR-WS.org (2017). http://ceur-ws.org/Vol-1951/PrivOn2017_paper_2.pdf (1951)

  9. Biskup, J., Link, S.: Appropriate inferences of data dependencies in relational databases. Ann. Math. Artif. Intell. 63(3-4), 213–255 (2011). https://doi.org/10.1007/s10472-012-9275-0

    Article  MathSciNet  MATH  Google Scholar 

  10. Biskup, J., Paredaens, J., Schwentick, T., Van den Bussche, J.: Solving equations in the relational algebra. SIAM J. Comput. 33(5), 1052–1066 (2004). https://doi.org/10.1137/S0097539701390859

    Article  MathSciNet  MATH  Google Scholar 

  11. Biskup, J., Preuß, M.: Database fragmentation with encryption: under which semantic constraints and a priori knowledge can two keep a secret? In: Wang, L., Shafiq, B. (eds.) Data and Applications Security and Privacy XXVII, DBSec 2013, Lecture Notes in Computer Science, vol. 7964, pp 17–32. Springer (2013)

  12. Biskup, J., Preuß, M.: Inference-proof data publishing by minimally weakening a database instance. In: Prakash, A., Shyamasundar, R.K. (eds.) 10th International Conference on Information Systems Security , ICISS 2014, Lecture Notes in Computer Science, vol. 8880, pp 30–49. Springer (2014), https://doi.org/10.1007/978-3-319-13841-1_3

    Google Scholar 

  13. Biskup, J., Preuß, M.: Information control by policy-based relational weakening templates. In: Askoxylakis, I.G., Ioannidis, S., Katsikas, S.K., Meadows, C.A. (eds.) 21st European Symposium on Research in Computer Security, ESORICS 2016, Proceedings, Part II, Lecture Notes in Computer Science, vol. 9879, pp 361–381. Springer (2016), https://doi.org/10.1007/978-3-319-45741-3_19

    Chapter  Google Scholar 

  14. Biskup, J., Preuß, M.: Inferences from attribute-disjoint and duplicate-preserving relational fragmenatation. In: Woltran, S., Ferrarotti, F. (eds.) 10th International Symposium on Foundations of Information and Knowledge Systems, FoIKS 2018, Lecture Notes in Computer Science, vol. 10833, pp 77–96. Springer (2018)

  15. Biskup, J., Preuß, M., Wiese, L.: On the inference-proofness of database fragmentation satisfying confidentiality constraints. In: Lai, X., Zhou, J., Li, H. (eds.) Information Security, ISC 2011, Lecture Notes in Computer Science, vol. 7001, pp 246–261. Springer (2011)

  16. Ciriani, V., De Capitani Di Vimercati, S., Foresti, S., Jajodia, S., Paraboschi, S., Samarati, P.: Enforcing confidentiality constraints on sensitive databases with lightweight trusted clients. In: Data and Applications Security XXIII, DBSec 2009, Lecture Notes in Computer Science, vol. 5645, pp 225–239. Springer (2009)

  17. Ciriani, V., De Capitani Di Vimercati, S., Foresti, S., Jajodia, S., Paraboschi, S., Samarati, P.: Keep a few: outsourcing data while maintaining confidentiality. In: 14th European Symposium on Research in Computer Security, ESORICS 2009, Lecture Notes in Computer Science, vol. 5789, pp 440–455. Springer (2009)

  18. Ciriani, V., De Capitani di Vimercati, S., Foresti, S., Jajodia, S., Paraboschi, S., Samarati, P.: Combining fragmentation and encryption to protect privacy in data storage. ACM Trans. Inf. Syst. Secur. 13(3), 22:1–22:33 (2010)

    Article  Google Scholar 

  19. De Capitani di Vimercati, S., Foresti, S., Jajodia, S., Livraga, G., Paraboschi, S., Samarati, P.: Fragmentation in presence of data dependencies. IEEE 11(6), 510–523 (2014)

    MATH  Google Scholar 

  20. Demetrovics, J., Katona, G.O.H., Sali, A.: The characterization of branching dependencies. Discret. Appl. Math. 40(2), 139–153 (1992). https://doi.org/10.1016/0166-218X(92)90027-8

    Article  MathSciNet  MATH  Google Scholar 

  21. Denning, D.E.: Cryptography and Data Security. Addison-Wesley, Reading (1982)

    MATH  Google Scholar 

  22. Fung, B.C.M., Wang, K., Fu, A.W.C., Yu, P.S.: Introduction to Privacy-Preserving Data Publishing – Concepts and Techniques. Chapman & Hall/CRC, Boca Raton (2011)

    Google Scholar 

  23. Ganapathy, V., Thomas, D., Feder, T., Garcia-Molina, H., Motwani, R.: Distributing data for secure database services. Trans. Data Privacy 5(1), 253–272 (2012)

    MathSciNet  Google Scholar 

  24. Garey, M.R., Johnson, D.S.: Computers and Intractability: a Guide to the Theory of NP-Completeness. Freeman, New York (1979)

    MATH  Google Scholar 

  25. Grant, J., Minker, J.: Inferences for numerical dependencies. Theor. Comput. Sci. 41, 271–287 (1985). https://doi.org/10.1016/0304-3975(85)90075-1

    Article  MathSciNet  MATH  Google Scholar 

  26. Halpern, J.Y., O’Neill, K.R.: Secrecy in multiagent systems. ACM Trans. Inf. Syst. Secur. 12(1), 5.1–5.47 (2008)

    Article  Google Scholar 

  27. Hartmann, S.: On the implication problem for cardinality constraints and functional dependencies. Ann. Math. Artif. Intell. 33(2-4), 253–307 (2001). https://doi.org/10.1023/A:1013133428451

    Article  MathSciNet  MATH  Google Scholar 

  28. Knuth, D.E.: The Art of Computer Programming, Volume I: Fundamental Algorithms, 2nd edn. Addison-Wesley, Reading (1973)

    Google Scholar 

  29. Kolahi, S., Libkin, L.: An information-theoretic analysis of worst-case redundancy in database design. ACM Trans. Database Syst. 35(1), 5:1–5:32 (2010). https://doi.org/10.1145/1670243.1670248

    Article  Google Scholar 

  30. Korte, B., Vygen, J.: Combinatorial Optimization: Theory and Algorithms, 5th edn. Algorithms and Combinatorics. Springer, Heidelberg (2012)

    Book  Google Scholar 

  31. Libkin, L.: Certain answers as objects and knowledge. Artif. Intell. 232, 1–19 (2016). https://doi.org/10.1016/j.artint.2015.11.004

    Article  MathSciNet  MATH  Google Scholar 

  32. Machanavajjhala, A., Kifer, D., Gehrke, J., Venkitasubramaniam, M.: -diversity: privacy beyond k-anonymity. ACM Trans. Knowl. Discovery Data 1(1) (2007)

  33. Sagiv, Y., Delobel, C., Parker, D.S. Jr, Fagin, R.: An equivalence between relational database dependencies and a fragment of propositional logic. J. ACM 28(3), 435–453 (1981). https://doi.org/10.1145/322261.322263

    Article  MathSciNet  MATH  Google Scholar 

  34. Sali, A. Sr, Sali, A.: Generalized dependencies in relational databases. Acta Cybern. 13(4), 431–438 (1998)

    MathSciNet  MATH  Google Scholar 

  35. Samarati, P.: Protecting respondents’ identities in microdata release. IEEE Trans. Knowl. Data Eng. 13(6), 1010–1027 (2001). https://doi.org/10.1109/69.971193

    Article  Google Scholar 

  36. Sweeney, L.: k-anonymity: a model for protecting privacy. Int. J. Uncertainty Fuzziness Knowledge Based Syst. 10(5), 557–570 (2002)

    Article  MathSciNet  Google Scholar 

  37. Thalheim, B.: Entity-Relationship Modeling – Foundations of Database Technology. Springer, Heidelberg (2000)

    Book  Google Scholar 

  38. Thalheim, B.: Integrity Constraints in (conceptual) database models. In: The Evolution of Conceptual Modeling - From a Historical Perspective Towards the Future of Conceptual Modeling [Outcome of a Dagstuhl Seminar Held 2008], Lecture Notes in Computer Science. https://doi.org/10.1007/978-3-642-17505-3_3, vol. 6520, pp 42–67. Springer (2011)

    Google Scholar 

  39. Xu, X., Xiong, L., Liu, J.: Database Fragmentation with confidentiality constraints: a graph search approach. In: Park, J., Squicciarini, A.C. (eds.) 5th ACM Conference on Data and Application Security and Privacy, CODASPY 2015, pp 263–270. ACM (2015)

Download references

Acknowledgments

We would like to sincerely thank our student assistant Anna-Sophie Picker for supporting us to implement the partial prototype and to perform the experiments. Moreover, we are very thankful to the anonymous reviewers for carefully examining our original submission and providing helpful comments and constructive suggestions for improvements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joachim Biskup.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

figure a
figure b

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biskup, J., Preuß, M. Checking inference-proofness of attribute-disjoint and duplicate-preserving fragmentations. Ann Math Artif Intell 87, 43–82 (2019). https://doi.org/10.1007/s10472-019-09655-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10472-019-09655-5

Keywords

Mathematics Subject Classification (2010)

Navigation