Skip to main content

Advertisement

Log in

Categorical study for algebras of Fitting’s lattice-valued logic and lattice-valued modal logic

  • Published:
Annals of Mathematics and Artificial Intelligence Aims and scope Submit manuscript

Abstract

The paper explores categorical interconnections between lattice-valued relational systems and algebras of Fitting’s lattice-valued modal logic. We define lattice-valued Boolean systems, and then we study adjointness and co-adjointness of functors defined on them. As a result, we get a duality for algebras of lattice-valued logic. Following this duality result, we establish a duality for algebras of lattice-valued modal logic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Saunders, M.L.: Categories for the working mathematician. Springer Science & Business Media (2013)

  2. Adámek, J.H., Herrlich, H., Strecker, G.E.: Abstract and Concrete Categories. Pure and Applied Mathematics. Wiley, New York (1990)

    MATH  Google Scholar 

  3. Johnstone, P.T.: Stone Spaces. Cambridge University Press, Cambridge (1986)

    MATH  Google Scholar 

  4. Clark, D.M., Davey, B.A.: Natural Dualities for the Working Algebraist. Cambridge University Press, Cambridge (1998)

    MATH  Google Scholar 

  5. Chagrov, A., Zakharyaschev, M.: Modal Logic. Oxford logic guides (1997)

  6. Denniston, J.T., Melton, A., Rodabaugh, S.E.: Lattice-valued topological systems. In: Bodenhofer, U., De Baets, B., Klement, E.P., Saminger-Platz, S. (eds.) 30th Linz Seminar on Fuzzy Set Theory, pp 24–31. Johannes Kepler Universität, Linz (2009)

  7. Denniston, J.T., Melton, A., Rodabaugh, S.E.: Interweaving algebra and topology: lattice-valued topological systems. Fuzzy Set. Syst. 192, 58–103 (2012)

    Article  MathSciNet  Google Scholar 

  8. Denniston, J.T., Rodabaugh, S.E.: Functorial relationships between lattice-valued topology and topological systems. Quaestiones Mathematicae. 32(2), 139–186 (2009)

    Article  MathSciNet  Google Scholar 

  9. Solovyov, S.A.: Variable-basis topological systems versus variable-basis topological spaces. Soft Computing. 14, 1059–1068 (2010)

    Article  Google Scholar 

  10. Maruyama, Y.: Dualities for algebras of fitting’s many-valued modal logics. Fundamenta Informaticae. 106(2-4), 273–294 (2011)

    Article  MathSciNet  Google Scholar 

  11. Solovyov, S.A.: Localification of variable-basis topological systems. Quaestiones Mathematicae. 34(1), 11–33 (2011)

    Article  MathSciNet  Google Scholar 

  12. Maruyama, Y.: Algebraic study of lattice-valued logic and lattice-valued modal logic. Lecture Notes in Computer science. 5378, 172–186 (2009)

    MathSciNet  MATH  Google Scholar 

  13. Fitting, M.: Many-valued modal logics. Fundam. Inform. 15(3-4), 235–254 (1991)

    MathSciNet  MATH  Google Scholar 

  14. Fitting, M.: Many-valued modal logics II. Fundam. Inform. 17(1-2), 55–73 (1992)

    MathSciNet  MATH  Google Scholar 

  15. Fitting, M.: Tableaus for many-valued modal logic. Stud. Logica. 55(1), 63–87 (1995)

    Article  MathSciNet  Google Scholar 

  16. Syropoulos, A., de Paiva, V.: Fuzzy topological systems. arXiv:1107.2513 (2011)

  17. Rodabaugh, S.E.: Categorical foundations of variable-basis fuzzy topology. In: Mathematics of Fuzzy Sets, pp 273–388. Springer, Boston (1999)

  18. Maruyama, Y.: Fuzzy topology and Łukasiewicz logics from the viewpoint of duality theory. Stud. Logica. 94(2), 245–269 (2010)

    Article  Google Scholar 

  19. Eleftheriou, P.E., Koutras, C.D.: Frame constructions, truth invariance and validity preservation in many-valued modal logic. Journal of Applied Non-Classical Logics 15(4), 367–388 (2005)

    Article  MathSciNet  Google Scholar 

  20. Hansoul, G.: A duality for Boolean algebras with operators. Algebra Universalis. 17(1), 34–49 (1983)

    Article  MathSciNet  Google Scholar 

  21. Koutras, C.D.: A catalog of weak many-valued modal axioms and their corresponding frame classes. J Appl Non-Classical Logics 13(1), 47–71 (2003)

    Article  MathSciNet  Google Scholar 

  22. Solovyov, S.A.: Categorical foundations of variety-based topology and topological systems. Fuzzy Sets and Systems. 192, 176–200 (2012)

    Article  MathSciNet  Google Scholar 

  23. Vickers, S.: Topology via logic. Cambridge University Press, Cambridge (1996)

    MATH  Google Scholar 

  24. Vickers, S.: Topology via constructive logic. Logic, Language, and Computation 2 (1999)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kumar Sankar Ray.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ray, K.S., Das, L.K. Categorical study for algebras of Fitting’s lattice-valued logic and lattice-valued modal logic. Ann Math Artif Intell 89, 409–429 (2021). https://doi.org/10.1007/s10472-020-09707-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10472-020-09707-1

Keywords

Mathematics Subject Classification (2010)