Abstract
Coordinate-wise minimization is a simple popular method for large-scale optimization. Unfortunately, for general (non-differentiable and/or constrained) convex problems, its fixed points may not be global minima. We present two classes of linear programs (LPs) that coordinate-wise minimization solves exactly. We show that these classes subsume the dual LP relaxations of several well-known combinatorial optimization problems and the method finds a global minimum with sufficient accuracy in reasonable runtimes. Moreover, we experimentally show that the method frequently yields good suboptima or even optima for sparse LPs where optimality is not guaranteed in theory. Though the presented problems can be solved by more efficient methods, our results are theoretically non-trivial and can lead to new large-scale optimization algorithms in the future.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Ansotegui, C., Bacchus, F., Järvisalo, M., Martins, R., et al.: MaxSAT Evaluation 2017. https://helda.helsinki.fi/bitstream/handle/10138/233112/mse17proc.pdf (2017)
Bacchus, F., Järvisalo, M., Martins, R.: MaxSAT evaluation 2018: New developments and detailed results. Journal on Satisfiability, Boolean Modeling and Computation 11(1), 99–131 (2019). Instances available at https://maxsat-evaluations.github.io/
Bacchus, F., Järvisalo, M.J., Martins, R., et al.: MaxSAT Evaluation 2018. https://helda.helsinki.fi/bitstream/handle/10138/237139/mse18_proceedings.pdf (2018)
Bertsekas, D.P.: Nonlinear Programming, 2nd edn. Belmont, Athena Scientific (1999)
Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Foundations and Trends in Machine learning 3(1), 1–122 (2011)
Boykov, Y., Lempitsky, V.S.: From photohulls to photoflux optimization. In: Proceedings of the British Machine Conference, vol. 3, p 27. Citeseer (2006)
Boykov, Y., Veksler, O., Zabih, R.: Markov random fields with efficient approximations. In: Proceedings. 1998 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No. 98CB36231), pp. 648–655. IEEE (1998)
Brualdi, R.A.: Combinatorial Matrix Classes, vol. 13. Cambridge University Press, Cambridge (2006)
Carpaneto, G., Toth, P.: Primal-dual algrorithms for the assignment problem. Discret. Appl. Math. 18(2), 137–153 (1987)
Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to imaging. Journal of Mathematical Imaging and Vision 40(1), 120–145 (2011)
Chudak, F.A., Hochbaum, D.S.: A half-integral linear programming relaxation for scheduling precedence-constrained jobs on a single machine. Oper. Res. Lett. 25(5), 199–204 (1999)
Dechter, R.: Tractable structures for constraint satisfaction problems. In: Handbook of Constraint Programming, chap. 7. Elsevier (2006)
Dell’Amico, M., Toth, P.: Algorithms and codes for dense assignment problems: the state of the art. Discret. Appl. Math. 100(1-2), 17–48 (2000)
Dlask, T.: Unit propagation by means of coordinate-wise minimization. In: International Conference on Machine Learning, Optimization, and Data Science. Springer (2020)
Dlask, T., Werner, T.: Bounding linear programs by constraint propagation: Application to Max-SAT. In: International Conference on Principles and Practice of Constraint Programming, pp. 177–193. Springer (2020)
Dlask, T., Werner, T.: A class of linear programs solvable by coordinate-wise minimization. In: Kotsireas, I.S., Pardalos, P.M. (eds.) Learning and Intelligent Optimization, pp. 52–67. Springer (2020)
Dlask, T., Werner, T.: On relation between constraint propagation and block-coordinate descent in linear programs. In: International Conference on Principles and Practice of Constraint Programming, pp. 194–210. Springer (2020)
Duan, R., Pettie, S.: Linear-time approximation for maximum weight matching. Journal of the ACM (JACM) 61(1), 1–23 (2014)
Edmonds, J.: Maximum matching and a polyhedron with 0, 1-vertices. J. Res. Natl. Bur. Stand. B 69(125-130), 55–56 (1965)
Edmonds, J., Karp, R.M.: Theoretical improvements in algorithmic efficiency for network flow problems. Journal of the ACM (JACM) 19(2), 248–264 (1972)
Ferdous, S., Pothen, A., Khan, A.: New approximation algorithms for minimum weighted edge cover. In: 2018 Proceedings of the Seventh SIAM Workshop on Combinatorial Scientific Computing, pp. 97–108. SIAM (2018)
Freuder, E.C.: A sufficient condition for backtrack-free search. Journal of the ACM (JACM) 29(1), 24–32 (1982)
Fulkerson, D., Ford, L.: Flows in Networks. Princeton University Press, Princeton (1962)
Gabow, H.N.: Data structures for weighted matching and nearest common ancestors with linking. In: Proceedings of the first annual ACM-SIAM symposium on Discrete algorithms, pp. 434–443 (1990)
Globerson, A., Jaakkola, T.: Fixing max-product: Convergent message passing algorithms for MAP LP-relaxations. In: Neural Information Processing Systems, pp. 553–560 (2008)
Goldberg, A.V., Kennedy, R.: An efficient cost scaling algorithm for the assignment problem. Math. Program. 71(2), 153–177 (1995)
Hochbaum, D.S.: Solving integer programs over monotone inequalities in three variables: A framework for half integrality and good approximations. Eur. J. Oper. Res. 140(2), 291–321 (2002)
Hochbaum, D.S., Pathria, A.: Forest harvesting and minimum cuts: a new approach to handling spatial constraints. For. Sci. 43(4), 544–554 (1997)
Hochbaum, D.S., Pathria, A.: Approximating a generalization of MAX 2SAT and MIN 2SAT. Discret. Appl. Math. 107(1-3), 41–59 (2000)
Hooker, J.: Logic-based methods for optimization: combining optimization and constraint satisfaction. Wiley series in discrete mathematics and optimization. Wiley (2000)
Kappes, J.H., Andres, B., Hamprecht, F.A., Schnörr, C., Nowozin, S., Batra, D., Kim, S., Kausler, B.X., Kröger, T., Lellmann, J., Komodakis, N., Savchynskyy, B., Rother, C.: A comparative study of modern inference techniques for structured discrete energy minimization problems. Intl. J. Comput. Vis. 115(2), 155–184 (2015)
Kohli, R., Krishnamurti, R., Mirchandani, P.: The minimum satisfiability problem. SIAM J. Discret. Math. 7(2), 275–283 (1994)
Kolmogorov, V.: Convergent tree-reweighted message passing for energy minimization. IEEE Trans. Pattern Anal. Mach. Intell. 28(10), 1568–1583 (2006)
Kolmogorov, V.: A new look at reweighted message passing. IEEE Trans. Pattern Anal. Mach. Intell. 37(5) (2015)
Kolmogorov, V., Zabih, R.: Computing visual correspondence with occlusions via graph cuts. Tech. rep., Cornell University (2001)
Kovalevsky, V.A., Koval, V.K.: A diffusion algorithm for decreasing the energy of the max-sum labeling problem. Glushkov Institute of Cybernetics, Kiev, USSR. Unpublished (approx.1975)
Kuhn, H.W.: The Hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955)
Lempitsky, V., Boykov, Y.: Global optimization for shape fitting. In: 2007 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8. IEEE (2007)
Lempitsky, V., Boykov, Y., Ivanov, D.: Oriented visibility for multiview reconstruction. In: European Conference on Computer Vision, pp. 226–238. Springer (2006)
Li, C.M., Manya, F.: Maxsat, hard and soft constraints. Handbook of satisfiability 185, 613–631 (2009)
Matoušek, J., Gärtner, B.: Understanding and using linear programming (universitext). Springer (2006)
Papadimitriou, C.H., Steiglitz, K.: Combinatorial optimization: algorithms and complexity. Courier Corporation (1998)
Průša, D., Werner, T.: LP relaxation of the Potts labeling problem is as hard as any linear program. IEEE Trans. Pattern Anal. Mach. Intell. 39(7), 1469–1475 (2017)
Průša, D., Werner, T.: LP relaxations of some NP-hard problems are as hard as any LP. In: ACM-SIAM Symp. on Discrete Algorithm (SODA), pp. 1372–1382. SIAM (2017)
Scharstein, D., Szeliski, R.: A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. Intl. J. Comput. Vis. 47(1-3), 7–42 (2002)
Schlesinger, M.I., Antoniuk, K.: Diffusion algorithms and structural recognition optimization problems. Cybern. Syst. Anal. 47, 175–192 (2011)
Szeliski, R., Zabih, R., Scharstein, D., Veksler, O., Kolmogorov, V., Agarwala, A., Tappen, M., Rother, C.: A comparative study of energy minimization methods for markov random fields with smoothness-based priors. IEEE Trans. Pattern Anal. Mach. Intell. 30(6), 1068–1080 (2008)
Tourani, S., Shekhovtsov, A., Rother, C., Savchynskyy, B.: MPLP++: Fast, parallel dual block-coordinate ascent for dense graphical models. In: Proceedings of the European Conference on Computer Vision, pp. 251–267 (2018)
Tourani, S., Shekhovtsov, A., Rother, C., Savchynskyy, B.: Taxonomy of dual block-coordinate ascent methods for discrete energy minimization. arXiv.org (2020)
Tseng, P.: Convergence of a block coordinate descent method for nondifferentiable minimization. J. Optim. Theory Appl. 109(3), 475–494 (2001)
Vazirani, V.V.: Approximation Algorithms. Springer, New York (2001)
Werner, T.: A linear programming approach to max-sum problem: A review. IEEE Trans. Pattern Anal. Mach. Intell. 29(7), 1165–1179 (2007)
Werner, T., Průša, D., Dlask, T.: Relative interior rule in block-coordinate descent. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7559–7567 (2020)
Werner, T., Průša, D.: Relative interior rule in block-coordinate minimization. arXiv.org (2019)
Wright, S.J.: Coordinate descent algorithms. Math. Program. 151 (1), 3–34 (2015)
Xu, K., Li, W.: Many hard examples in exact phase transitions with application to generating hard satisfiable instances. arXiv.org. Instances available at http://sites.nlsde.buaa.edu.cn/kexu/benchmarks/max-sat-benchmarks.htm (2003)
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of Interests
The authors declare that they have no conflict of interest.
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
This work has been supported by the Czech Science Foundation (grant 19-09967S), the OP VVV project CZ.02.1.01/0.0/0.0/16_019/0000765, and the Grant Agency of the Czech Technical University in Prague (grant SGS19/170/OHK3/3T/13).
Rights and permissions
About this article
Cite this article
Dlask, T., Werner, T. Classes of linear programs solvable by coordinate-wise minimization. Ann Math Artif Intell 90, 777–807 (2022). https://doi.org/10.1007/s10472-021-09731-9
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10472-021-09731-9