Abstract
This paper deals with a new algorithm for a 0-1 bidimensional knapsack Lagrangean dual which relaxes one of the two constraints. Classical iterative algorithms generate a sequence of multipliers which converges to an optimal one. In this way, these methods generate a sequence of 0-1 one-dimensional knapsack instances. Generally, the procedure for solving each instance is considered as a black box. We propose to design a new iterative scheme in which the computation of the step size takes into account the algorithmic efficiency of each instance. Our adapted step size iterative algorithm is compared favorably with several other algorithms for the 0-1 biknapsack Lagrangean dual over difficult instances for CPLEX 7.0.
Similar content being viewed by others
References
Balas, E. and E. Zemel. (1980). “An Algorithm for Large Zero-One Knapsack Problems.” Operations Research 28(5), 1130–1153.
Bourgeois, Ph. and G. Plateau. (1992). “Selected Algorithmic Tools for the Resolution of the 0-1 Knapsack Problem.” EURO XII - TIMS XXXI Joint International Conference, Helsinki.
Camerini, P.M., L. Fratta, and F. Maffioli. (1975). “On Improving Relaxation Methods by Modified Gradient Techniques.” Mathematical Programming Study 3, 26–34.
Carstensen, P.J. (1983). “Complexity of Some Parametric Integer and Network Programming Problems.” Mathematical Programming 26, 64–75.
Chakravarti, N. and A.P.M. Wagelmans. (1999). “Calculation of Stability Radius for Combinatorial Optimization Problems.” Operations Research Letters 23, 1–7.
Crema, A. (2000). “An Algorithm for the Multiparametric 0-1 Integer Linear Programming Problem Relative to the Objective Function.” European Journal of Operational Research 125, 18–24.
Crema, A. (2002). “The Multiparametric 0-1 Integer Linear Programming Problem: A Unified Approach.” European Journal of Operational Research 139, 511–520.
Desrochers, M. and F. Soumis. (1988). “A Reoptimization Algorithm for the Shortest Path Problem with Time Windows.” European Journal of Operational Research 35, 242–254.
Fayard, D. and G. Plateau. (1979). “Contribution à la résolution Des Programmes Mathématiques En Nombres Entiers.” Thèse de doctorat d'état, Université des Sciences et Techniques de Lille.
Fayard, D. and G. Plateau. (1982). “An Algorithm for the Solution of the 0-1 Knapsack Problem.” Computing 28, 269–287.
Fréville, A., L.A.N. Lorena, and G. Plateau. (1990). “Efficient Subgradient Algorithms for the 0-1 Multiknapsack Lagrangean and Surrogate Duals.” Research Report LIPN, Université de Paris 13.
Fréville, A. and G. Plateau. (1993a). “An Exact Search for the Solution of the Surrogate Dual of the 0-1 Bidimensional Knapsack Problem.” European Journal of Operational Research 68, 413–421.
Fréville, A. and G. Plateau. (1993b). “FPBK92: an implicit enumeration code for the solution of the 0-1 bidimensional knapsack problem.” ECCO VI, Bruxelles.
Gal, T. and H.J. Greenberg. (1997). Advances in Sensitivity Analysis and Parametric Programming. Boston, Dordrecht, London: Kluwer Academic Publishers.
Gavish, B. and H. Pirkul. (1985). “Efficient Algorithms for Solving Multiconstraint 0-1 Knapsack Problems to Optimality.” Mathematical Programming 31, 78–105.
Geoffrion, A.M. and K. Nauss. (1977). “Parametric and Postoptimality Analysis in Integer Linear Programming.” Management Science 23, 453–466.
Greenberg, H.J. (1998). “An Annoted Bibliography for Post-Solution Analysis in Mixed Integer Programming and Combinatorial Optimization.” In D.L. Woodruff (ed.), Advances in Computational and Stochastic Optimization, Logic Programming and Heuristic Search. Boston, MA: Kluwer Academic Publishers.
Guignard, M. and S. Kim. (1987). “Lagrangean Decomposition: A Model Yielding Stronger Lagrangian Bounds.” Mathematical Programming 32, 215–228.
Guignard, M. and S. Kim. (1987). “Lagrangean Decomposition for Integer Programming: Theory and Applications.” RAIRO-Recherche Opérationnelle 21, 307–324.
Gusfield, D. (1980). “Sensitivity Analysis for Combinatorial Optimization.” Memo. No. UCB/ERL M80/22, Electronics Research Laboratory, Univ. of California, Berkeley, California.
Gusfield, D. (1983). “Parametric Combinatorial Computing and A Problem of Program Module Distribution.” Journal of the Association for Computing Machinery 30(3), 551–563.
Hanafi, S. (1993). “Contribution à la résolution De Problèmes Duaux De Grandes Tailles En Optimisation Combinatoire.” Ph.D, Université de Valenciennes et du Hainaut Cambrésis.
Hanafi, S. (2002). “Métaheuristiques et dualité en Optimisation Combinatoire: Théorie et Applications.” Habilitation à Diriger des Recherches, Université de Valenciennes et du Hainaut Cambrésis.
Hanafi, S. and A. Fréville. (2001). “Résolution Du Dual Composite Du Sac à Dos Bidimensionnel En variables 0-1 par une méthode de branch and bound.” FRANCORO III, Québec.
Holm, S. and D. Klein. (1984). “Three Methods for Postoptimal Analysis in Integer Linear Programming.” Mathematical Programming Study 21, 97–109.
Horowitz, E. and S. Sahni. (1974). “Computing Partitions with Application to the Knapsack Problems.” Journal of the Association for Computing Machinery 21, 275–292.
ILOG Inc. (2000) CPLEX Callable Library 7.0. Reference Manuel. ILOG.
Jenkins, L. (1987). “Parametric-Objective Integer Programming Using Knapsack Facets and Gomory Cutting Planes.” European Journal of Operational Research 31, 102–109.
Jenkins, L. (1990). “Parametric Methods in Integer Linear Programming.” Annals of Operations Research 27, 77–96.
Karwan, M.H. and R.L. Rardin. (1980). “Searchability of the Composite and Multiple Surrogate Dual Functions.” Operations Research 28, 1251–1257.
Libura, M. (1996). “Optimality Conditions and Sensitivity Analysis for Combinatorial Optimization Problems.” Control and Cybernetics 25(6), 1165–1180.
Loukakis, E. and A.P. Muhlemann. (1984). “Parametrisation Algorithms for the Integer Linear Programs in Binary Variables.” European Journal of Operational Research 17, 104–115.
Martello, S. and P. Toth. (1978). “Algorithm for the Solution of the 0-1 Single Knapsack.” Computing 21, 81–86.
Michelon, Ph. (1991). “Méthodes Lagrangiennes pour programmation linéaire avec variables entières.” Investigación Operativa 2(2), 127–146.
Michelon, Ph. and N. Maculan. (1991). “Lagrangean Decomposition for Integer Nonlinear Programming.” Mathematical Programming 52, 303–313.
Nauss, K. (1975). “Parametric Integer Programming.” PhD thesis, Western Management Science Institute, UCLA.
Piper, C.J. and A. Zoltners. (1976). “Some Easy Postoptimality Analysis for Zero-One Programming.” Management Science 22, 759–765.
Plateau, G. and M. Elkihel. (1985). “A Hybrid Method for the 0-1 Knapsack Problem.” Methods of Operations Research 49, 277–293.
Reinoso, H. and N. Maculan. (1992). “Lagrangean Decomposition for Integer Programming: A New Scheme.” INFOR 52(2), 1–5.
Roodman, G.M. (1974). “Postoptimality Analysis in Zero-One Programming by Implicit Enumeration: The Mixed Integer Case.” Naval Research Logistics Quarterly 21, 595–607.
Schrage, L. and L. Wolsey. (1985). “Sensitivity Analysis for Branch and Bound Integer Programming.” Operations Research 33, 1008–1023.
Shih, W. (1979). “A Branch and Bound Method for the Multiconstraint 0-1 Knapsack Problem.” Journal of the Operations Research Society 30, 369–378.
Sotskov, Y.N., V.K. Leontev, and E.N. Gordeev. (1995). “Some Concepts of Stability Analysis in Combinatorial Optimization.” Discrete Applied Mathematics 58, 169–190.
Thiongane, B., A. Nagih, and G. Plateau. (2003a). “Analyse de sensibilité pour les problèmes linéaires en variables 0-1.” RAIRO/Operations Research 37(4), 291–309.
Thiongane, B., A. Nagih, and G. Plateau. (2003b). “Theoretical and Algorithmic Study for Parametric 0-1 Linear Programs Relative to the Objective Function.” Submitted for publica- tion.
Thiongane, B., A. Nagih, and G. Plateau. (2004). “Lagrangean Heuristics Combined with Reoptimization for the 0-1 Biknapsack Problem.” In revision for Discrete Applied Mathematics.
Wagelmans, A.P.M. (1990). “Sensitivity Analysis in Combinatorial Optimization.” Ph.D, Eramsus University, Rotterdam.
Weingartner, H.M. and D.N. Ness. (1967). “Method for the Solution of the Multidimensional 0-1 Knapsack Problem.” Operations Research 11(15), 83–103.
Yu, G. (1990). “Algorithms for Optimizing Piecewise Linear Functions and Degree Constrained Minimum Spanning Tree Problems.” Ph.D, University of Pennsylvania.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Thiongane, B., Nagih, A. & Plateau, G. An Adapted Step Size Algorithm for a 0-1 Biknapsack Lagrangean Dual. Ann Oper Res 139, 353–373 (2005). https://doi.org/10.1007/s10479-005-3454-x
Issue Date:
DOI: https://doi.org/10.1007/s10479-005-3454-x