Abstract
We propose a new Memetic Particle Swarm Optimization scheme that incorporates local search techniques in the standard Particle Swarm Optimization algorithm, resulting in an efficient and effective optimization method, which is analyzed theoretically. The proposed algorithm is applied to different unconstrained, constrained, minimax and integer programming problems and the obtained results are compared to that of the global and local variants of Particle Swarm Optimization, justifying the superiority of the memetic approach.
Similar content being viewed by others
References
Abido, M. A. (2002). Optimal design of power system stabilizers using particle swarm optimization. IEEE Transactions on Energy Conversion, 17, 406–413.
Agrafiotis, D. K., & Cedeno, W. (2002). Feature selection for structure-activity correlation using binary particle swarms. Journal of Medicinal Chemistry, 45, 1098–1107.
Angeline, P. J. (1998). Evolutionary optimization versus particle swarm optimization: philosophy and performance differences. In V. W. Porto, N. Saravanan, D. Waagen & A. E. Eiben (Eds.), Evolutionary programming (Vol. VII, pp. 601–610). Berlin: Springer.
Bandler, J. W., & Charalambous, C. (1974). Nonlinear programming using minimax techniques. Journal of Optimization Theory and Applications, 13, 607–619.
Belew, R. K. (1990). Evolution, learning and culture: computational metaphores for adaptive algorithms. Complex Systems, 4, 11–49.
Belew, R. K., McInerny, J., & Schraudolph, N. N. (1991). Evolving networks: using the genetic algorithm with connectionist learning. In C. Langton, C. Taylor, J. Farmer & S. Rasmussen (Eds.), Proceedings of the second conference in artificial life (pp. 511–548). Reading: Addison-Wesley.
Clerc, M., & Kennedy, J. (2002). The particle swarm—explosion, stability, and convergence in a multidimensional complex space. IEEE Transactions on Evolutionary Computation, 6, 58–73.
Cockshott, A. R., & Hartman, B. E. (2001). Improving the fermentation medium for Echinocandin B production. Part II: particle swarm optimization. Process Biochemistry, 36, 661–669.
Dawkins, R. (1976). The selfish gene. New York: Oxford University Press.
Floudas, C. A., & Pardalos, P. M. (1987). A collection of test problems for constrained global optimization algorithms. In P. M. Floudas (Ed.), Lecture notes in computer science, Vol. 455. Berlin: Springer.
Fourie, P. C., & Groenwold, A. A. (2002). The particle swarm optimization algorithm in size and shape optimization. Structural and Multidisciplinary Optimization, 23, 259–267.
Geesing, R., & Stork, D. (1991). Evolution and learning in neural networks: the number and distribution of learning trials affect the rate of evolution. In R. Lippmann, J. Moody & D. and Touretzky (Eds.), NIPS 3 (pp. 804–810). San Mateo: Morgan Kaufmann.
Glankwahmdee, A., Liebman, J. S., & Hogg, G. L. (1979). Unconstrained discrete nonlinear programming. Engineering Optimization, 4, 95–107.
Goldberg, D. (1989). Genetic algorithms in search, optimization, and machine learning. Reading: Addison-Wesley.
Hart, W. E. (1994). Adaptive global optimization with local search. Ph.D. thesis, University of California, San Diego, USA.
Himmelblau, D. M. (1972). Applied nonlinear programming. New York: McGraw-Hill.
Hinton, G. E., & Nowlan, S. J. (1987). How learning can guide evolution. Complex Systems, 1, 495–502.
Hock, W., & Schittkowski, K. (1981). Test examples for nonlinear programming codes. In Lecture notes in economics and mathematical systems (Vol. 187). Berlin: Springer.
Holland, J. H. (1975). Adaptation in natural and artificial systems. Ann Arbor: Ann Arbor University Press.
Homaifar, A., Lai, A. H. -Y., & Qi, X. (1994). Constrained optimization via genetic algorithms. Simulation, 2, 242–254.
Hoos, H. H., & Stützle, T. (2004). Stochastic local search: foundations and applications. San Mateo: Morgan Kaufmann.
Kennedy, J., & Eberhart, R. C. (2001). Swarm intelligence. San Mateo: Morgan Kaufmann.
Krasnogor, N. (2002). Studies on the theory and design space of memetic algorithms. Ph.D. thesis, University of the West of England, Bristol, UK.
Land, M. W. S. (1998). Evolutionary algorithms with local search for combinatorial optimization. Ph.D. thesis, University of California, San Diego, USA.
Laskari, E. C., Parsopoulos, K. E., & Vrahatis, M. N. (2002). Particle swarm optimization for integer programming. In Proceedings of the IEEE 2002 congress on evolutionary computation (pp. 1576–1581). Hawaii (HI), USA. New York: IEEE Press.
Lee, C. -Y., & Yao, X. (2004). Evolutionary programming using mutations based on the Lévy probability distribution. IEEE Transactions on Evolutionary Computation, 8, 1–13.
Lu, W. Z., Fan, H. Y., Leung, A. Y. T., & Wong, J. C. K. (2002). Analysis of pollutant levels in central Hong Kong applying neural network method with particle swarm optimization. Environmental Monitoring and Assessment, 79, 217–230.
Lukšan, L., & Vlček, J. (2000). Test problems for nonsmooth unconstrained and linearly constrained optimization. Technical report 798, Institute of Computer Science, Academy of Sciences of the Czech Republic, Prague, Czech Republic.
Matyas, J. (1965). Random optimization. Automatization and Remote Control, 26, 244–251.
Merz, P. (1998). Memetic algorithms for combinatorial optimization. Fitness landscapes and effective search strategies. Ph.D. thesis, Department of Electrical Engineering and Computer Science, University of Siegen, Germany
Michalewicz, Z. (1996). Genetic algorithms + data structures = evolution programs. Berlin: Springer.
Moscato, P. (1989). On evolution, search, optimization, genetic algorithms and martial arts. Towards memetic algorithms. Technical report C3P, Report 826, Caltech Concurrent Computation Program, California, USA
Moscato, P. (1999). Memetic algorithms. A short introduction. In D. Corne, M. Dorigo & F. and Glover (Eds.), New ideas in optimization (pp. 219–235). London: McGraw-Hill.
Muhlenbein, M., Gorges Schleiter, M., & Kramer, O. (1988). Evolution algorithms in combinatorial optimization. Parallel Computing, 7, 65–85.
Ourique, C. O., Biscaia, E. C., & Carlos Pinto, J. (2002). The use of particle swarm optimization for dynamical analysis in chemical processes. Computers and Chemical Engineering, 26, 1783–1793.
Papageorgiou, E. I., Parsopoulos, K. E., Groumpos, P. P., & Vrahatis, M. N. (2004). Fuzzy cognitive maps learning through swarm intelligence. In: Lecture notes in computer science (Vol. 3070, pp. 344–349). Berlin: Springer.
Parsopoulos, K. E., & Vrahatis, M. N. (2002a). Initializing the particle swarm optimizer using the nonlinear simplex method. In A. Grmela & N. Mastorakis (eds.) Advances in intelligent systems, fuzzy systems, evolutionary computation (pp. 216–221). WSEAS Press.
Parsopoulos, K. E., & Vrahatis, M. N. (2002b). Particle swarm optimization method for constrained optimization problems. In P. Sincak, J. Vascak, V. Kvasnicka & J. and Pospichal (Eds.), Intelligent technologies–theory and application (New trends in intelligent technologies). Frontiers in artificial intelligence and applications (Vol. 76, pp. 214–220). Amsterdam: IOS Press.
Parsopoulos, K. E., & Vrahatis, M. N. (2002c). Recent approaches to global optimization problems through particle swarm optimization. Natural Computing, 1, 235–306.
Parsopoulos, K. E., & Vrahatis, M. N. (2004). On the Computation of all global minimizers through particle swarm optimization. IEEE Transactions on Evolutionary Computation, 8, 211–224.
Parsopoulos, K. E., Papageorgiou, E. I., Groumpos, P. P., & Vrahatis, M. N. (2004). Evolutionary computation techniques for optimizing fuzzy cognitive maps in radiation therapy systems. In Lecture notes in computer science (Vol. 3102, pp. 402–413). Berlin: Springer.
Petalas, Y. G., & Vrahatis, M. N. (2004a). Memetic algorithms for neural network training in bioinformatics. In European symposium on intelligent technologies, hybrid systems and their implementation on smart adaptive systems (EUNITE 2004) (pp. 41–46). Aachen, Germany.
Petalas, Y. G., & Vrahatis, M. N. (2004b). Memetic algorithms for neural network training on medical data. In Fourth European symposium on biomedical engineering, Patras, Greece.
Rao, S. S. (1992). Optimization: theory and applications. New Dehli: Wiley Eastern.
Ray, T., & Liew, K. M. (2002). A swarm metaphor for multiobjective design optimization. Engineering Optimization, 34(2), 141–153.
Rüdolph, G. (1994). An evolutionary algorithm for integer programming. In Y. Davidor, H.-P. Schwefel & R. Männer (Eds.), Parallel problem solving from nature (Vol. 3, pp. 139–148). Berlin: Springer.
Saldam, A., Ahmad, I., & Al-Madani, S. (2002). Particle swarm optimization for task assignment problem. Microprocessors and Microsystems, 26, 363–371.
Schwefel, H. -P. (1995). Evolution and optimum seeking. New York: Wiley.
Storn, R., & Price, K. (1997). Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. Journal of Global Optimization, 11, 341–359.
Trelea, I. C. (2003). The particle swarm optimization algorithm. Convergence analysis and parameter selection. Information Processing Letters, 85, 317–325.
Xu, S. (2001). Smoothing method for minimax problems. Computational Optimization and Applications, 20, 267–279.
Yang, J.-M., Chen, Y.-P., Horng, J.-T., & Kao, C.-Y. (1997). Applying family competition to evolution strategies for constrained optimization. In Lecture Notes in Mathematics (Vol. 1213, pp. 201–211). New York: Springer.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Petalas, Y.G., Parsopoulos, K.E. & Vrahatis, M.N. Memetic particle swarm optimization. Ann Oper Res 156, 99–127 (2007). https://doi.org/10.1007/s10479-007-0224-y
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10479-007-0224-y