Skip to main content
Log in

A robust and efficient algorithm for planar competitive location problems

  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

In this paper we empirically analyze several algorithms for solving a Huff-like competitive location and design model for profit maximization in the plane. In particular, an exact interval branch-and-bound method and a multistart heuristic already proposed in the literature are compared with uego (Universal Evolutionary Global Optimizer), a recent evolutionary algorithm. Both the multistart heuristic and uego use a Weiszfeld-like algorithm as local search procedure. The computational study shows that uego is superior to the multistart heuristic, and that by properly fine-tuning its parameters it usually (in the computational study, always) find the global optimal solution, and this in much less time than the interval branch-and-bound method. Furthermore, uego can solve much larger problems than the interval method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Benati, S., & Laporte, G. (1994). Tabu search algorithms for the (r|X p )-medianoid and (r|p)-centroid problems. Location Science, 2, 193–204.

    Google Scholar 

  • Drezner, Z. (1984). The p-center problem: heuristic and optimal algorithms. Journal of the Operational Research Society, 35, 741–748.

    Article  Google Scholar 

  • Drezner, T. (1994). Optimal continuous location of a retail facility, facility attractiveness, and market share: an interactive model. Journal of Retailing, 70, 49–64.

    Article  Google Scholar 

  • Drezner, T. (1995). Competitive location in the plane. In Facility location: a survey of applications and methods (pp. 285–300). Berlin: Springer.

    Google Scholar 

  • Drezner, T. (1998). Location of multiple retail facilities with a limited budget – in continuous space. Journal of Retailing and Consumer Services, 5, 173–184.

    Article  Google Scholar 

  • Drezner, T., & Drezner, Z. (2004). Finding the optimal solution to the Huff based competitive location model. Computational Management Science, 1, 193–208.

    Article  Google Scholar 

  • Drezner, Z., & Suzuki, A. (2004). The big triangle small triangle method for the solution of non-convex facility location problems. Operations Research, 52, 128–135.

    Article  Google Scholar 

  • Drezner, T., Drezner, Z., & Salhi, S. (2002). Solving the multiple competitive facilities location problem. European Journal of Operational Research, 142, 138–151.

    Article  Google Scholar 

  • Erkut, E., & Neuman, S. (1989). Analytical models for locating undesirable facilities. European Journal of Operational Research, 40, 275–291.

    Article  Google Scholar 

  • Fernández, J., & Pelegrín, B. (2001). Using interval analysis for solving planar single-facility location problems: new discarding tests. Journal of Global Optimization, 19, 61–81.

    Article  Google Scholar 

  • Fernández, J., Fernández, P., & Pelegrín, B. (2000). A continuous location model for siting a non-noxious undesirable facility within a geographical region. European Journal of Operational Research, 121, 259–274.

    Article  Google Scholar 

  • Fernández, J., Fernández, P., & Pelegrín, B. (2002). Estimating actual distances by norm functions: a comparison between the l k,p,θ -norm and the \(l_{b_{1},b_{2},\theta}\) -norm and a study about the selection of the data set. Computers and Operations Research, 29, 609–623.

    Article  Google Scholar 

  • Fernández, J., Pelegrín, B., Plastria, F., & Tóth, B. (2007). Solving a Huff-like competitive location and design model for profit maximization in the plane. European Journal of Operational Research, 179, 1274–1287.

    Article  Google Scholar 

  • Glover, F., & Laguna, M. (1997). Tabu search. Dordrecht: Kluwer Academic.

    Google Scholar 

  • Goldberg, D. E. (1989). Genetic algorithms in search, optimization and machine learning. Reading: Addison–Wesley.

    Google Scholar 

  • González-Linares, J. M., Guil, N., Zapata, E. L., Ortigosa, P. M., & García, I. (2000). Deformable shapes detection by stochastic optimization. In 2000 IEEE international conference on image processing (ICIP’2000), Vancouver, Canada, 10–13 September 2000.

  • Hakimi, S. L. (1990). Locations with spatial interactions: competitive locations and games. In R. L. Francis & P. B. Mirchandani (Eds.), Discrete location theory (pp. 439–478). New York: Wiley/Interscience.

    Google Scholar 

  • Hammer, R., Hocks, M., Kulisch, U., & Ratz, D. (1995). C++ Toolbox for verified computing, I: basic numerical problems: theory, algorithms, and programs. Berlin: Springer.

    Google Scholar 

  • Hansen, P., & Mladenović, N. (2001). Variable neighborhood search: principles and applications. European Journal of Operational Research, 130, 449–467.

    Article  Google Scholar 

  • Hansen, P., Peeters, D., Richard, D., & Thisse, J. F. (1985). The minisum and minimax location problems revisited. Operations Research, 33, 1251–1265.

    Article  Google Scholar 

  • Hansen, P., Jaumard, B., & Tuy, H. (1995). Global optimization in location. In Facility location: a survey of applications and methods (pp. 43–68). Berlin: Springer.

    Google Scholar 

  • Huff, D. L. (1964). Defining and estimating a trading area. Journal of Marketing, 28, 34–38.

    Article  Google Scholar 

  • Jamarillo, J. H., Bhadury, J., & Batta, R. (2002). On the use of genetic algorithms to solve location problems. Computers and Operations Research, 29, 761–779.

    Article  Google Scholar 

  • Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by simulated annealing. Science, 220, 671–680.

    Article  Google Scholar 

  • Knüppel, O. (1993). PROFIL/BIAS—a fast interval library. Computing, 53, 277–287.

    Article  Google Scholar 

  • Ortigosa, P. M., García, I., & Jelasity, M. (2001). Reliability and performance of uego, a clustering-based global optimizer. Journal of Global Optimization, 9, 265–289.

    Article  Google Scholar 

  • Pelegrín, B., & Cánovas, L. (1998). A new assignment rule to improve seed points algorithms for the continuous k-center problem. European Journal of Operational Research, 104, 266–374.

    Article  Google Scholar 

  • Pérez-Brito, D., Moreno-Pérez, J. A., & García-González, C. G. (2004). Búsqueda por entornos variables: desarrollo y aplicaciones en localización. In B. Pelegrín (Ed.), Avances en localización de servicios y aplicaciones (pp. 349–381). Murcia: Servicio de Publicaciones Universidad de Murcia.

    Google Scholar 

  • Plastria, F. (1992). GBSSS: The generalized big square small square method for planar single-facility location. European Journal or Operational Research, 62, 163–174.

    Article  Google Scholar 

  • Redondo, J. L., Ortigosa, P. M., García, I., & Fernández, J. J. (2004). Image registration in electron microscopy. A stochastic optimization approach. In Lecture notes in computer science : Vol. 3212. Proceedings of the international conference on image analysis and recognition, ICIAR 2004 II (pp. 141–149). Berlin: Springer.

    Google Scholar 

  • Solis, F. J., & Wets, R. J. B. (1981). Minimization by random search techniques. Mathematics of Operations Research, 6, 19–30.

    Article  Google Scholar 

  • Tuy, H., Al-Khayyal, F., & Zhou, F. (1995). A D.C. optimization method for single facility location problems. Journal of Global Optimization, 7, 209–227.

    Article  Google Scholar 

  • Weber, A. (1909). Über den Standort der Industrien. 1. Teil: Reine Theorie des Standordes. Germany: Tübingen.

    Google Scholar 

  • Weiszfeld, E. (1937). Sur le point pour lequel la somme des distances de n points donnés est minimum. Tohoku Mathematical Journal, 43, 355–386.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Fernández.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Redondo, J.L., Fernández, J., García, I. et al. A robust and efficient algorithm for planar competitive location problems. Ann Oper Res 167, 87–105 (2009). https://doi.org/10.1007/s10479-007-0233-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-007-0233-x

Keywords

Navigation