Abstract
An improved fuzzy relaxation algorithm for image contrast enhancement is introduced, the relationship between the convergence regions and the parameters in the transformations defined by the algorithm is shown, which is essential to the successful application of this algorithm. Furthermore, in order to measure the quality of an enhanced image, an index of fuzziness is used in this paper to evaluate the performance of the fuzzy relaxation scheme. This extended index of fuzziness is used as a criterion for automatically stopping the fuzzy relaxation process. The analytical result is tested by experiments of image contrast enhancement.
Similar content being viewed by others
References
Boskovitz, V., & Guterman, H. (2002). An adaptive neuro-fuzzy system for automatic image segmentation and edge detection. IEEE Transactions on Fuzzy Systems, 10(2), 247–262. doi:10.1109/91.995125.
Chen, B. T., Chen, Y. S., & Hsu, W. H. (1995). Automatic histogram specification based on fuzzy set operations for image enhancement. IEEE Signal Processing Letters, 2(2), 37–40. doi:10.1109/97.365534.
Cheng, H. D., Chen, Y. H., & Sun, Y. (1999). A novel fuzzy entropy approach to image enhancement & thresholding. Signal Processing, 75(3), 277–301. doi:10.1016/S0165-1684(98)00239-4.
Cheng, H. D., & Chen, J. R. (1997). Automatically determine the membership function based on the maximum entropy principle. Information Sciences, 96(3/4), 163–182. doi:10.1016/S0020-0255(96)00141-7.
Cheng, H. D., & Li, J. (2003). Fuzzy homogeneity & scale-space approach to color image segmentation. Pattern Recognition, 36(7), 1545–1562. doi:10.1016/S0031-3203(02)00293-5.
Cheng, H. D., & Xu, H. (2000). A novel fuzzy logic approach to contrast enhancement. Pattern Recognition, 33(5), 809–819. doi:10.1016/S0031-3203(99)00096-5.
Cheng, H. D., & Xu, H. (2002). A novel fuzzy logic approach to mammogram contrast enhancement. Information Sciences, 148(1/4), 167–184. doi:10.1016/S0020-0255(02)00293-1.
de Carvalho, R. A., & Costa, H. G. (2007). Application of an integrated decision support process for supplier selection. Enterprise Information Systems, 1(2), 197–216. doi:10.1080/17517570701356208.
De Luca, A., & Termini, S. (1972). A definition of non probabilistic entropy in the setting of fuzzy set theory. Information and Control, 20(4), 301–312. doi:10.1016/S0019-9958(72)90199-4.
Deng, W., & Lyengar, A. S. (1996). A new probabilistic relaxation scheme and its application to edge detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 18(4), 432–437. doi:10.1109/34.491624.
Farbiz, F., Menhaj, M. B., Motamedi, S. A., & Hagan, M. T. (2000). A new fuzzy logic filter for image enhancement. IEEE Transactions on Systems, Man, and Cybernetics, Part B, 30(1), 110–119.
Feng, S., & Xu, L. D. (1999). Decision support for fuzzy comprehensive evaluation of urban development. Fuzzy Sets and Systems, 105(1), 1–12. doi:10.1016/S0165-0114(97)00229-7.
Gao, X., Li, Z., & Li, L. (2008). A process model for concurrent design in manufacturing enterprise information systems. Enterprise Information Systems, 2(1), 33–46. doi:10.1080/17517570701661813.
Hansen, M. W., & Higgins, W. E. (1997). Relaxation methods for supervised image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19(9), 949–962. doi:10.1109/34.615445.
John, R., & Innocent, P. (2005). Modelling uncertainty in clinical diagnosis using fuzzy logic. IEEE Transactions on System, Man and Cybernetics, Part B: Cybernetics, 35(5), 1340–1350. Medline.
Kaufmann, A. (1975). Introduction to the theory of fuzzy subsets. San Diego: Academic Press.
Li, C. H., & Lee, C. K. (1995). Image smoothing using parametric relaxation. Graphical Models and Image Processing, 57(2), 161–174. doi:10.1006/gmip.1995.1016.
Li, H., & Yang, H. S. (1989). Fast and reliable image enhancement using fuzzy relaxation technique. IEEE Transactions on System, Man, and Cybernetics, 19(5), 1276–1281. doi:10.1109/21.44048.
Luo, J., Xu, L., Jamont, J.-P., Zeng, L., & Shi, Z. (2007). Flood decision support system on agent grid: method and implementation. Enterprise Information Systems, 1(1), 49–68. doi:10.1080/17517570601092184.
Pal, S. K., & King, R. A. (1981). Image enhancement using smoothing with fuzzy sets. IEEE Transactions on System, Man, and Cybernetics, 11(7), 494–501.
Plataniotis, K. N., Androutsos, D., & Venetsanopoulos, A. N. (1999). Adaptive fuzzy systems for multichannel signal processing. Proceedings of the IEEE, 87(9), 1601–1622. doi:10.1109/5.784243.
Rosenfeld, A., Hummel, R. A., & Zucker, S. W. (1976). Scene labelling by relaxation operations. IEEE Transactions on System Man, and Cybernetics, 6(6), 420–433.
Russo, F. (1995). An image enhancement technique based on the FIRE operator. In IEEE Int. Conf. Image Processing, ICIP’95, Washington, DC, Oct. 22–25.
Russo, F. (1998). Recent advances in fuzzy techniques for image enhancement. IEEE Transactions on Instrumentation & Measurement, 47(6), 1428–1434. doi:10.1109/19.746707.
Shao, J. (2000). Fuzzy categorization of weather conditions for thermal mapping. Journal of Applied Meteorology, 39(10), 1784–1790.
Sonka, M., Hlavac, V., & Boyle, R. (1999). Image processing, analysis, and machine vision. Pacific Grove: Brooks/COLE.
Tizhoosh, H. R., & Michaelis, B. (1998). Improvement of image quality based on subjective evaluation and fuzzy aggregation techniques. In EUFIT’98, Aachen, Germany (pp. 1325–1329).
Tizhoosh, H. R., & Michaelis, B. (1999). Subjectivity, psychology and fuzzy techniques: a new approach to image enhancement. In Proc. of 18th Int. Conf. of NAFIPS’99, New York, USA (pp. 522–526).
Tobias, O. J., & Seara, R. (2002). Image segmentation by histogram thresholding using fuzzy sets. IEEE Transactions on Image Processing, 11(12), 1457–1465. Medline, doi:10.1109/TIP.2002.806231.
Tyan, C., & Wang, P. (1993). Image processing-enhancement, filtering and edge detection using the fuzzy logic approach. In Proceedings of FUZZ-IEEE’93—The 2nd IEEE Conference on Fuzzy Systems, San Francisco, USA (pp. 600–605).
You, J., & Cohen, H. A. (1997). A new approach to image retrieval by fast indexing and searching. In Proceedings of Digital Image Computing: Techniques and Applications, Auckland, New Zealand, Dec. 10–12 (pp. 425–430).
Zadeh, L. A., Fu, K. S., Tanaka, K., & Shimura, M. (1975). Fuzzy sets and their applications to cognitive and decision processes. San Diego: Academic Press.
Xu, L. D. (1988). A fuzzy multi-objective programming algorithm in decision support systems. Annals of Operations Research, 12(1–4), 315–320. Special Issue on Approaches to Intelligent Decision Support, doi:10.1007/BF02186373.
Xu, L. (2006). Advances in intelligent information processing. Expert Systems, 23(5), 249–250. doi:10.1111/j.1468-0394.2006.00405.x.
Zhou, S.-M., & Gan, J. Q. (2006). A new fuzzy relaxation algorithm for image enhancement. International Journal of Knowledge-Based & Intelligent Engineering Systems, 10(3), 181–192.
Zhou, S.-M., & Gan, J. Q. (2007). Constructing parsimonious fuzzy classifiers based on L2-SVM in high-dimensional space with automatic model selection and fuzzy rule ranking. IEEE Transactions on Fuzzy Systems, 15(3), 398–409. doi:10.1109/TFUZZ.2006.882464.
Zhou, S. M., & Xu, L. D. (2001). A new type of recurrent fuzzy neural network for modeling dynamic systems. Knowledge-Based Systems, 14(5), 243–251. doi:10.1016/S0950-7051(01)00102-2.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Zhou, SM., Gan, J.Q., Xu, L. et al. Fuzziness index driven fuzzy relaxation algorithm and applications to image processing. Ann Oper Res 168, 119–131 (2009). https://doi.org/10.1007/s10479-008-0363-9
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10479-008-0363-9