Skip to main content
Log in

Fuzziness index driven fuzzy relaxation algorithm and applications to image processing

  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

An improved fuzzy relaxation algorithm for image contrast enhancement is introduced, the relationship between the convergence regions and the parameters in the transformations defined by the algorithm is shown, which is essential to the successful application of this algorithm. Furthermore, in order to measure the quality of an enhanced image, an index of fuzziness is used in this paper to evaluate the performance of the fuzzy relaxation scheme. This extended index of fuzziness is used as a criterion for automatically stopping the fuzzy relaxation process. The analytical result is tested by experiments of image contrast enhancement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Boskovitz, V., & Guterman, H. (2002). An adaptive neuro-fuzzy system for automatic image segmentation and edge detection. IEEE Transactions on Fuzzy Systems, 10(2), 247–262. doi:10.1109/91.995125.

    Article  Google Scholar 

  • Chen, B. T., Chen, Y. S., & Hsu, W. H. (1995). Automatic histogram specification based on fuzzy set operations for image enhancement. IEEE Signal Processing Letters, 2(2), 37–40. doi:10.1109/97.365534.

    Article  Google Scholar 

  • Cheng, H. D., Chen, Y. H., & Sun, Y. (1999). A novel fuzzy entropy approach to image enhancement & thresholding. Signal Processing, 75(3), 277–301. doi:10.1016/S0165-1684(98)00239-4.

    Article  Google Scholar 

  • Cheng, H. D., & Chen, J. R. (1997). Automatically determine the membership function based on the maximum entropy principle. Information Sciences, 96(3/4), 163–182. doi:10.1016/S0020-0255(96)00141-7.

    Article  Google Scholar 

  • Cheng, H. D., & Li, J. (2003). Fuzzy homogeneity & scale-space approach to color image segmentation. Pattern Recognition, 36(7), 1545–1562. doi:10.1016/S0031-3203(02)00293-5.

    Article  Google Scholar 

  • Cheng, H. D., & Xu, H. (2000). A novel fuzzy logic approach to contrast enhancement. Pattern Recognition, 33(5), 809–819. doi:10.1016/S0031-3203(99)00096-5.

    Article  Google Scholar 

  • Cheng, H. D., & Xu, H. (2002). A novel fuzzy logic approach to mammogram contrast enhancement. Information Sciences, 148(1/4), 167–184. doi:10.1016/S0020-0255(02)00293-1.

    Article  Google Scholar 

  • de Carvalho, R. A., & Costa, H. G. (2007). Application of an integrated decision support process for supplier selection. Enterprise Information Systems, 1(2), 197–216. doi:10.1080/17517570701356208.

    Article  Google Scholar 

  • De Luca, A., & Termini, S. (1972). A definition of non probabilistic entropy in the setting of fuzzy set theory. Information and Control, 20(4), 301–312. doi:10.1016/S0019-9958(72)90199-4.

    Article  Google Scholar 

  • Deng, W., & Lyengar, A. S. (1996). A new probabilistic relaxation scheme and its application to edge detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 18(4), 432–437. doi:10.1109/34.491624.

    Article  Google Scholar 

  • Farbiz, F., Menhaj, M. B., Motamedi, S. A., & Hagan, M. T. (2000). A new fuzzy logic filter for image enhancement. IEEE Transactions on Systems, Man, and Cybernetics, Part B, 30(1), 110–119.

    Article  Google Scholar 

  • Feng, S., & Xu, L. D. (1999). Decision support for fuzzy comprehensive evaluation of urban development. Fuzzy Sets and Systems, 105(1), 1–12. doi:10.1016/S0165-0114(97)00229-7.

    Article  Google Scholar 

  • Gao, X., Li, Z., & Li, L. (2008). A process model for concurrent design in manufacturing enterprise information systems. Enterprise Information Systems, 2(1), 33–46. doi:10.1080/17517570701661813.

    Article  Google Scholar 

  • Hansen, M. W., & Higgins, W. E. (1997). Relaxation methods for supervised image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19(9), 949–962. doi:10.1109/34.615445.

    Article  Google Scholar 

  • John, R., & Innocent, P. (2005). Modelling uncertainty in clinical diagnosis using fuzzy logic. IEEE Transactions on System, Man and Cybernetics, Part B: Cybernetics, 35(5), 1340–1350. Medline.

    Article  Google Scholar 

  • Kaufmann, A. (1975). Introduction to the theory of fuzzy subsets. San Diego: Academic Press.

    Google Scholar 

  • Li, C. H., & Lee, C. K. (1995). Image smoothing using parametric relaxation. Graphical Models and Image Processing, 57(2), 161–174. doi:10.1006/gmip.1995.1016.

    Article  Google Scholar 

  • Li, H., & Yang, H. S. (1989). Fast and reliable image enhancement using fuzzy relaxation technique. IEEE Transactions on System, Man, and Cybernetics, 19(5), 1276–1281. doi:10.1109/21.44048.

    Article  Google Scholar 

  • Luo, J., Xu, L., Jamont, J.-P., Zeng, L., & Shi, Z. (2007). Flood decision support system on agent grid: method and implementation. Enterprise Information Systems, 1(1), 49–68. doi:10.1080/17517570601092184.

    Article  Google Scholar 

  • Pal, S. K., & King, R. A. (1981). Image enhancement using smoothing with fuzzy sets. IEEE Transactions on System, Man, and Cybernetics, 11(7), 494–501.

    Article  Google Scholar 

  • Plataniotis, K. N., Androutsos, D., & Venetsanopoulos, A. N. (1999). Adaptive fuzzy systems for multichannel signal processing. Proceedings of the IEEE, 87(9), 1601–1622. doi:10.1109/5.784243.

    Article  Google Scholar 

  • Rosenfeld, A., Hummel, R. A., & Zucker, S. W. (1976). Scene labelling by relaxation operations. IEEE Transactions on System Man, and Cybernetics, 6(6), 420–433.

    Article  Google Scholar 

  • Russo, F. (1995). An image enhancement technique based on the FIRE operator. In IEEE Int. Conf. Image Processing, ICIP’95, Washington, DC, Oct. 22–25.

  • Russo, F. (1998). Recent advances in fuzzy techniques for image enhancement. IEEE Transactions on Instrumentation & Measurement, 47(6), 1428–1434. doi:10.1109/19.746707.

    Article  Google Scholar 

  • Shao, J. (2000). Fuzzy categorization of weather conditions for thermal mapping. Journal of Applied Meteorology, 39(10), 1784–1790.

    Google Scholar 

  • Sonka, M., Hlavac, V., & Boyle, R. (1999). Image processing, analysis, and machine vision. Pacific Grove: Brooks/COLE.

    Google Scholar 

  • Tizhoosh, H. R., & Michaelis, B. (1998). Improvement of image quality based on subjective evaluation and fuzzy aggregation techniques. In EUFIT’98, Aachen, Germany (pp. 1325–1329).

  • Tizhoosh, H. R., & Michaelis, B. (1999). Subjectivity, psychology and fuzzy techniques: a new approach to image enhancement. In Proc. of 18th Int. Conf. of NAFIPS’99, New York, USA (pp. 522–526).

  • Tobias, O. J., & Seara, R. (2002). Image segmentation by histogram thresholding using fuzzy sets. IEEE Transactions on Image Processing, 11(12), 1457–1465. Medline, doi:10.1109/TIP.2002.806231.

    Article  Google Scholar 

  • Tyan, C., & Wang, P. (1993). Image processing-enhancement, filtering and edge detection using the fuzzy logic approach. In Proceedings of FUZZ-IEEE’93—The 2nd IEEE Conference on Fuzzy Systems, San Francisco, USA (pp. 600–605).

  • You, J., & Cohen, H. A. (1997). A new approach to image retrieval by fast indexing and searching. In Proceedings of Digital Image Computing: Techniques and Applications, Auckland, New Zealand, Dec. 10–12 (pp. 425–430).

  • Zadeh, L. A., Fu, K. S., Tanaka, K., & Shimura, M. (1975). Fuzzy sets and their applications to cognitive and decision processes. San Diego: Academic Press.

    Google Scholar 

  • Xu, L. D. (1988). A fuzzy multi-objective programming algorithm in decision support systems. Annals of Operations Research, 12(1–4), 315–320. Special Issue on Approaches to Intelligent Decision Support, doi:10.1007/BF02186373.

    Article  Google Scholar 

  • Xu, L. (2006). Advances in intelligent information processing. Expert Systems, 23(5), 249–250. doi:10.1111/j.1468-0394.2006.00405.x.

    Article  Google Scholar 

  • Zhou, S.-M., & Gan, J. Q. (2006). A new fuzzy relaxation algorithm for image enhancement. International Journal of Knowledge-Based & Intelligent Engineering Systems, 10(3), 181–192.

    Google Scholar 

  • Zhou, S.-M., & Gan, J. Q. (2007). Constructing parsimonious fuzzy classifiers based on L2-SVM in high-dimensional space with automatic model selection and fuzzy rule ranking. IEEE Transactions on Fuzzy Systems, 15(3), 398–409. doi:10.1109/TFUZZ.2006.882464.

    Article  Google Scholar 

  • Zhou, S. M., & Xu, L. D. (2001). A new type of recurrent fuzzy neural network for modeling dynamic systems. Knowledge-Based Systems, 14(5), 243–251. doi:10.1016/S0950-7051(01)00102-2.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shang-Ming Zhou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, SM., Gan, J.Q., Xu, L. et al. Fuzziness index driven fuzzy relaxation algorithm and applications to image processing. Ann Oper Res 168, 119–131 (2009). https://doi.org/10.1007/s10479-008-0363-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-008-0363-9

Keywords

Navigation