Skip to main content
Log in

Theoretical insights into the augmented-neural-network approach for combinatorial optimization

  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

The augmented-neural-network (AugNN) approach has been applied lately to some NP-Hard combinatorial problems, such as task scheduling, open-shop scheduling and resource-constraint project scheduling. In this approach the problem of search in the solution-space is transformed to a search in a weight-matrix space, much like in a neural-network approach. Some weight adjustment strategies are then used to converge to a good set of weights for a locally optimal solution. While empirical results have demonstrated the effectiveness of the AugNN approach vis-à-vis a few other metaheuristics, little theoretical insights exist which justify this approach and explain the effectiveness thereof. This paper provides some theoretical insights and justification for the AugNN approach through some basic theorems and also describes the algorithm and the formulation with the help of examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agarwal, A., Jacob, V., & Pirkul, H. (2003). Augmented neural networks for task scheduling. European Journal of Operational Research, 151(3), 481–502.

    Article  Google Scholar 

  • Agarwal, A., Jacob, V., & Pirkul, H. (2006). An improved augmented neural-networks approach for scheduling problems. INFORMS Journal on Computing, 18(1), 119–128.

    Article  Google Scholar 

  • Birbil, S. I., & Fang, S. C. (2003). An electromagnetism-like mechanism for global optimization. Journal of Global Optimization, 25(3), 263–282.

    Article  Google Scholar 

  • Cheng, R. W., & Gen, M. (1997). Parallel machine scheduling problems using memetic algorithms. Computers & Industrial Engineering, 33(3–4), 761–764.

    Article  Google Scholar 

  • Chu, P., & Beasley, J. (1998). A genetic algorithm for the multidimensional knapsack problem. Journal of Heuristics, 4(1), 63–86.

    Article  Google Scholar 

  • Colak, S., & Agarwal, A. (2005). Non-greedy heuristics and augmented neural networks for the open-shop scheduling problem. Naval Research Logistics, 52(7), 631–644.

    Article  Google Scholar 

  • Colak, S., Agarwal, A., & Erenguc, S. S. (2006). Resource constrained project scheduling problem: a hybrid neural approach. In: J. Weglarz & J. Jozefowska (Eds.), Topics in modern scheduling (pp. 297–318).

  • Debels, D., Reyck, B. D., Leus, R., & Vanhoucke, M. (2006). A hybrid scatter search/electromagnetism meta-heuristic for project scheduling. European Journal of Operational Research, 169(2), 638–653.

    Article  Google Scholar 

  • Díaz, J. A., & Fernández, E. (2006). Scatter search and Path Relinking for the capacitated p-Median problem. European Journal of Operational Research, 169(2), 570–585.

    Article  Google Scholar 

  • Dorigo, M., Caro, G. D., & Gambardella, L. M. (1999). Ant algorithms for discrete optimization. Artificial Life, 5(2), 137–172.

    Article  Google Scholar 

  • Glover, F. (1989). Tabu search—Part I. ORSA Journal on Computing, 1(3), 190–206.

    Google Scholar 

  • Goldberg, D. E. (1989). Genetic algorithms in search, optimization and machine learning. Dordrecht: Kluwer Academic.

    Google Scholar 

  • Helsgaun, K. (2000). An effective implementation of the Lin-Kernighan traveling salesman heuristic. European Journal of Operational Research, 126(1), 106–130.

    Article  Google Scholar 

  • Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by simulated annealing. Science, 220, 671–680.

    Article  Google Scholar 

  • Kolisch, R., & Hartmann, S. (2006). Experimental investigation of heuristics for resource-constrained project scheduling: An update. European Journal of Operational Research, 174(1), 23–37.

    Article  Google Scholar 

  • Lin, S., & Kernighan, B. W. (1973). An effective heuristic algorithm for the traveling salesman problem. Operations Research, 21(2), 498–516.

    Article  Google Scholar 

  • Martí, R., Laguna, M., & Glover, F. (2006). Principles of scatter search. European Journal of Operational Research, 169(2), 359–372.

    Article  Google Scholar 

  • Mehrotra, K., Mohan, C. K., & Ranka, S. (1997). Elements of artificial neural networks. Cambridge: MIT Press.

    Google Scholar 

  • Pacheco, J. A. (2005). A scatter search approach for the minimum sum-of-squares clustering problem. Computers & Operations Research, 32(5), 1325–1335.

    Google Scholar 

  • Pitsoulis, L. S., & Resende, M. G. C. (2001). Greedy randomized adaptive search procedures. In P. M. Pardalos & M. G. C. Resende (Eds.), Handbook of applied optimization. London: Oxford University Press.

    Google Scholar 

  • Reeves, C. R., & Yamada, T. (1998). Genetic algorithms, path relinking and the flowshop sequencing problem. Evolutionary Computation, 6(1), 45–60.

    Article  Google Scholar 

  • Rego, C. (2005). RAMP: A new metaheuristic framework for combinatorial optimization. In C. Rego & B. Alidaee (Eds.), Metaheuristic optimization via memory and evolution: Tabu search and scatter search (pp. 441–460). Dordrecht: Kluwer Academic.

    Chapter  Google Scholar 

  • Ribeiro, C. C., & Souza, M. C. (2002). Variable neighborhood search for the degree-constrained minimum spanning tree problem. Discrete Applied Mathematics, 118(1–2), 43–54.

    Article  Google Scholar 

  • Ruiz, R., & Stutzle, T. (2006). A simple and effective iterated greedy algorithm for the permutation flowshop problem. European Journal of Operational Research, 177(3), 2033–2049.

    Article  Google Scholar 

  • Stutzle, T. (1998). Applying iterated local search to the permutation flowshop problem. Technical Report AIDA–98–04, FG Intellektik, TU Darmstadt.

  • Valls, V., Ballestin, F., & Quintanilla, M. S. (2005). Justification and RCPSP: a technique that pays. European Journal of Operational Research, 165(2), 375–386.

    Article  Google Scholar 

  • Wolpert, D. H., & Macready, W. G. (1997). No free lunch theorems for optimization. IEEE Transactions on Evolutionary Computation, 1(1), 67–82.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anurag Agarwal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Agarwal, A. Theoretical insights into the augmented-neural-network approach for combinatorial optimization. Ann Oper Res 168, 101–117 (2009). https://doi.org/10.1007/s10479-008-0364-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-008-0364-8

Keywords

Navigation