Skip to main content
Log in

On the existence of a minimum integer representation for weighted voting systems

  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

A basic problem in the theory of simple games and other fields is to study whether a simple game (Boolean function) is weighted (linearly separable). A second related problem consists in studying whether a weighted game has a minimum integer realization. In this paper we simultaneously analyze both problems by using linear programming.

For less than 9 voters, we find that there are 154 weighted games without minimum integer realization, but all of them have minimum normalized realization. Isbell in 1958 was the first to find a weighted game without a minimum normalized realization, he needed to consider 12 voters to construct a game with such a property. The main result of this work proves the existence of weighted games with this property with less than 12 voters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bohosian, V., & Bruck, J. (2003). Algebraic techniques for constructing minimal weights threshold functions. SIAM Journal on Discrete Mathematics, 16, 114–126.

    Article  Google Scholar 

  • Brams, S. J., & Fishburn, P. C. (1976). Approval voting. American Political Science Review, 72, 831–847.

    Google Scholar 

  • Boros, E., Hammer, P. L., Ibaraki, T., & Kawakawi, K. (1991). Identifying 2-monotonic positive boolean functions in polynomial time. In W. L. Hsu & R. C. T. Lee (Eds.), LNCS: ISA’91 Algorithms (Vol. 557, pp. 104–115). Berlin: Springer.

    Google Scholar 

  • Boros, E., Hammer, P. L., Ibaraki, T., & Kawakawi, K. (1997). Polynomial time recognition of 2-monotonic positive functions given by an oracle. SIAM Journal of Computing, 26, 93–109.

    Article  Google Scholar 

  • Brams, S. J., Jr., & Straffin, P.D. (1979). Prisoners’ dilemma and the professional sports drafts. American Mathematical Monthly, 80, 80–88.

    Article  Google Scholar 

  • Carreras, F., & Freixas, J. (1996). Complete simple games. Mathematical Social Sciences, 32, 139–155.

    Article  Google Scholar 

  • Chavátal, V. (1983). Linear programming. New York: Freeman.

    Google Scholar 

  • Dubey, P., & Shapley, L. S. (1979). Mathematical properties of the Banzhaf power index. Mathematics of Operations Research, 4, 99–131.

    Article  Google Scholar 

  • Fishburn, P. C. (1969). Preference, summation, and social welfare functions. Management Science, 16, 179–186.

    Article  Google Scholar 

  • Fishburn, P. C. (1973). The theory of social choice. Princeton: Princeton University Press.

    Google Scholar 

  • Freixas, J., & Molinero, X. (2008, accepted). Simple games and weighted games: a theoretical and computational viewpoint. Discrete Applied Mathematics.

  • Freixas, J., & Zwicker, W. S. (2003). Weighted voting, abstention, and multiple levels of approval. Social Choice and Welfare, 21, 399–431.

    Article  Google Scholar 

  • Glpk (gnu linear programming kit) package. (2005). URL:http://www.gnu.org/software/glpk/.

  • Hammer, P. L., Kogan, A., & Rothblum, U. G. (2000). Evaluation, strength and relevance of boolean functions. SIAM Journal on Discrete Mathematics, 13, 302–312.

    Article  Google Scholar 

  • Hu, S. T. (1965). Threshold logic. USA: Univ. of California Press.

    Google Scholar 

  • Isbell, J. R. (1958). A class of simple games. Duke Mathematics Journal, 25, 423–439.

    Article  Google Scholar 

  • Isbell, J. R. (1959). On the enumeration of majority games. Mathematical Tables and Other Aids to Computation, 13, 21–28.

    Article  Google Scholar 

  • Krohn, I., & Sudhölter, P. (1995). Directed and weighted majority games. ZOR-Mathematical Methods of Operations Research, 42, 189–216.

    Article  Google Scholar 

  • Maple. (2005). URL: http://www.maplesoft.com/.

  • Matlab. (2005). URL: http://www.mathworks.com/products/matlab/.

  • Maschler, M., & Peleg, B. (1966). A characterization, existence proof, and dimension bounds for the kernel of a game. Pacific Journal of Mathematics, 18, 289–328.

    Google Scholar 

  • Muroga, S., Toda, I., & Kondo, M. (1962). Majority decision functions of up to six variables. Mathematics of Computation, 16, 459–472.

    Article  Google Scholar 

  • Muroga, S. (1971). Threshold logic and its applications. New York: Wiley.

    Google Scholar 

  • Von Neumann, J., & Morgenstern, O. (1944). Theory of games and economic behavior. Princeton: Princeton University Press.

    Google Scholar 

  • Ostmann, A. (1985). Decisions by players of comparable strength. Journal of Economics, 45, 267–284.

    Google Scholar 

  • Shapiro, J. F. (1979). Mathematical programming: structures and algorithms. New York: Wiley.

    Google Scholar 

  • Taylor, A. D. (1995). Mathematics and politics. New York: Springer.

    Google Scholar 

  • Taylor, A. D., & Zwicker, W. S. (1992). A characterization of weighted voting. Proceedings of the American Mathematical Society, 115, 1089–1094.

    Article  Google Scholar 

  • Taylor, A. D., & Zwicker, W. S. (1999). Simple games: desirability relations, trading, and pseudoweightings. New Jersey: Princeton University Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xavier Molinero.

Additional information

This research was partially supported by Grant MTM 2006-06064 of “Ministerio de Ciencia y Tecnología y el Fondo Europeo de Desarrollo Regional” and SGRC 2005-00651 of “Generalitat de Catalunya”, and by the Spanish “Ministerio de Ciencia y Tecnología” programmes ALINEX (TIN2005-05446 and TIN2006-11345).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Freixas, J., Molinero, X. On the existence of a minimum integer representation for weighted voting systems. Ann Oper Res 166, 243–260 (2009). https://doi.org/10.1007/s10479-008-0422-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-008-0422-2

Keywords