Skip to main content
Log in

A piecewise linearization for retail shelf space allocation problem and a local search heuristic

  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

Retail shelf space allocation problem is well known in literature. In this paper, we make three contributions to retail shelf space allocation problem considering space elasticity (SSAPSE). First, we reformulate an existing nonlinear model for SSAPSE to an integer programming (IP) model using piecewise linearization. Second, we show that the linear programming relaxation of the proposed IP model produces tight upper bound. Third, we develop a heuristic that consistently produces near optimal solutions for randomly generated instances of problems with size (products, shelves) varying from (25, 5) to (200, 50) within a minute of CPU time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, E. E. (1979). An analysis of retail display space: theory and methods. The Journal of Business, 52(1), 103–118.

    Article  Google Scholar 

  • Anderson, E. E., & Amato, H. N. (1974). A mathematical model for simultaneously determining the optimal brand-collection and display-area allocation. Operations Research, 22(1), 13–21.

    Article  Google Scholar 

  • Bai, R. (2005). An investigation of novel approaches for optimizing retail shelf-space allocation. An unpublished Ph.D. Thesis, University of Nottingham, UK.

  • Bai, R., & Kendall, G. (2007). A model for fresh produce shelf space allocation and inventory management with freshness condition dependent demand. INFORMS Journal on Computing. http://www.informs.org/site/IJOC/index.php?c=10&kat=Future+Issues.

  • Bai, R., Burke, E. K., & Kendall, G. (2007). Heuristic, Meta-heuristic and Hyper-heuristic approaches for fresh produce inventory control and shelf space allocation. Journal of the Operational Research Society, 1–11. doi:10.1057/palgrave.jors.2602463.

  • Bookbinder, J. H., & Zarour, F. H. (2001). Direct product profitability and retail shelf-space allocation models. Journal of Business Logistics, 22(2), 183–208.

    Google Scholar 

  • Borin, N., & Farris, P. (1995). A sensitivity analysis of retailer shelf management models. Journal of Retailing, 71(2), 153–171.

    Article  Google Scholar 

  • Borin, N., Farris, P. W., & Freeland, J. R. (1994). A model for determining retail product category assortment and shelf space allocation. Decision Sciences, 25(3), 359–384.

    Article  Google Scholar 

  • Bultez, A., & Naert, P. (1988). SH.A.R.P.: Shelf allocation for retailers’ profit. Marketing Science, 7(3), 211–231.

    Article  Google Scholar 

  • Bultez, A., Naert, P., Gijsbrechts, E., & Abelle, P. V. (1989). Asymmetric cannibalism in retail assortments. Journal of Retailing, 65(2), 153–192.

    Google Scholar 

  • Cairn, J. P. (1963). Allocate space for maximum profits. Journal of Retailing, 39(2), 43.

    Google Scholar 

  • Corstjens, M., & Doyle, P. (1981). A model for optimizing retail space allocations. Management Science, 27(7), 822–833.

    Article  Google Scholar 

  • Corstjens, M., & Doyle, P. (1983). A dynamic model for strategically allocating retail space. The Journal of the Operational Research Society, 34(10), 943–951.

    Google Scholar 

  • Cox, K. K. (1970). The effect of shelf space upon sales of branded products. Journal of Marketing Research (JMR), 7(1), 55–58.

    Article  Google Scholar 

  • Curhan, R. C. (1972). The relationship between shelf space and unit sales in supermarkets. Journal of Marketing Research (JMR), 9(4), 406–412.

    Article  Google Scholar 

  • Drèze, X., Hoch, S. J., & Purk, M. E. (1994). Shelf management and space elasticity. Journal of Retailing, 70(4), 301–326.

    Article  Google Scholar 

  • Frank, R. E., & Massy, W. F. (1970). Shelf position and space effects on sales. Journal of Marketing Research, 7(1), 59–66.

    Article  Google Scholar 

  • Gochet, W., & Smeersy, Y. (1979). Reversed geometric programming: a branch-and-bound method involving linear sub problems. Operations Research, 27(5), 982–996.

    Article  Google Scholar 

  • Hansen, P., & Heinsbroek, H. (1979). Product selection and space allocation in supermarkets. European Journal of Operational Research, 3(6), 474–484.

    Article  Google Scholar 

  • Hariga, M. A., Al-Ahmari, A., & Mohamed, A. A. (2007). A joint optimisation model for inventory replenishment, product assortment, shelf space and display area allocation decisions. European Journal of Operational Research, 181(1), 239–251.

    Article  Google Scholar 

  • Hwang, H., Choi, B., & Lee, M. (2005). A model for shelf space allocation and inventory control considering location and inventory level effects on demand. International Journal of Production Economics, 97(2), 185–195.

    Article  Google Scholar 

  • Irion, J., Al-Khayyal, F., & Lu, J.-C. (2004). A piecewise linearization framework for retail shelf space management models. Technical Report, School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0205. http://www.optimization-online.org/DB_FILE/2004/10/967.pdf.

  • Kotzan, J. A., & Evanson, R. V. (1969). Responsiveness of drug store sales to shelf space allocations. JMR, Journal of Marketing Research, 6(4), 465–469.

    Article  Google Scholar 

  • Laarhoven, P. J. M. V., & Aarts, E. H. L. (1987). Simulated annealing: theory and applications. Dordrecht: Kluwer Academic.

    Google Scholar 

  • Lim, A., Rodrigues, B., & Zhang, X. (2004). Metaheuristics with local search techniques for retail shelf-space optimization. Management Science, 50(1), 117–131.

    Article  Google Scholar 

  • Martello, S., & Toth, P. (1990). Knapsack problems: algorithms and computer implementations. New York: Wiley. ISBN:0-471-92420-2.

    Google Scholar 

  • Owen, J. H., & Mehrotra, S. (2002). On the value of binary expansions for general mixed-integer linear programs. Operations Research, 50(5), 810–819.

    Article  Google Scholar 

  • Reyes, P. M., & Frazier, G. V. (2007). Goal programming model for grocery shelf space allocation. European Journal of Operational Research, 181(2), 634–644.

    Article  Google Scholar 

  • Urban, T. L. (1998). An inventory-theoretic approach to product assortment and shelf-space allocation. Journal of Retailing, 74(1), 15–35.

    Article  Google Scholar 

  • Urban, T. L. (2002). The interdependence of inventory management and retail shelf management. International Journal of Physical Distribution & Logistics Management, 32(1), 41–58.

    Article  Google Scholar 

  • Yang, M. (2001). An efficient algorithm to allocate shelf space. European Journal of Operational Research, 131(1), 107–118.

    Article  Google Scholar 

  • Yang, M., & Chen, W. (1999). A study on shelf space allocation and management. International Journal of Production Economics, 60–61, 309–317.

    Article  Google Scholar 

  • Zufryden, F. S. (1986). A dynamic programming approach for product selection and supermarket shelf-space allocation. The Journal of the Operational Research Society, 37(4), 413–422.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gajendra K. Adil.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gajjar, H.K., Adil, G.K. A piecewise linearization for retail shelf space allocation problem and a local search heuristic. Ann Oper Res 179, 149–167 (2010). https://doi.org/10.1007/s10479-008-0455-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-008-0455-6

Keywords

Navigation