Skip to main content
Log in

A multiobjective framework for heavily constrained examination timetabling problems

  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

University examination timetabling is a challenging set partitioning problem that comes in many variations, and real world applications usually carry multiple constraints and require the simultaneous optimization of several (often conflicting) objectives. This paper presents a multiobjective framework capable of solving heavily constrained timetabling problems. In this prototype study, we focus on the two objectives: minimizing timetable length while simultaneously optimizing the spread of examinations for individual students. Candidate solutions are presented to a multiobjective memetic algorithm as orderings of examinations, and a greedy algorithm is used to construct violation free timetables from permutation sequences of exams. The role of the multiobjective algorithm is to iteratively improve a population of orderings, with respect to the given objectives, using various mutation and reordering heuristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdullah, S., Ahmadi, S., Burke, E., & Dror, M. (2007). Investigating Ahuja-Orlin’s large neighbourhood search approach for examination timetabling. OR Spectrum, 29(2), 351–372.

    Article  Google Scholar 

  • Apt, K. (2003). Principles of constraint programming. New York: Cambridge University Press.

    Book  Google Scholar 

  • Asmuni, H., Burke, E. K., & Garibaldi, J. M. (2005). Fuzzy multiple ordering criteria for examination timetabling. In E. Burke (Ed.), LNCS: Vol. 3616. PATAT 2004 (pp. 334–354). Berlin: Springer.

    Google Scholar 

  • Brélaz, D. (1979). New methods to color the vertices of graphs. Communications of the ACM, 24(4), 251–256.

    Article  Google Scholar 

  • Burke, E., & Newall, J. (1996). A memetic algorithm for university exam timetabling. In LNCS: Vol. 1153. Practice and theory of automated timetabling: first international conference, PATAT 1996 (pp. 241–250). Berlin: Springer.

    Google Scholar 

  • Burke, E., & Newall, J. (1999). A multi-stage evolutionary algorithm for the timetabling problem. IEEE Transactions on Evolutionary Computation, 3(1), 63–74.

    Article  Google Scholar 

  • Burke, E. K., & Newall, J. P. (2004). Solving examination timetabling problems through adaption of heuristic orderings. Annals of Operations Research, 129, 107–134.

    Article  Google Scholar 

  • Burke, E. K., & Petrovic, S. (2002). Recent research directions in automated timetabling. European Journal of Operational Research, 140(2), 266–280.

    Article  Google Scholar 

  • Burke, E. K., Elliman, D., Ford, P. H., & Weare, R. F. (1996). Examination timetabling in British universities: A survey. In Selected papers from the first international conference on practice and theory of automated timetabling (pp. 76–90). London: Springer.

    Google Scholar 

  • Burke, E., Bykov, Y., & Petrovic, S. (2001). A multicriteria approach to examination timetabling. In LNCS: Vol. 2079. Practice and theory of automated timetabling III: third international conference, PATAT 2000 (pp. 118–131). Berlin: Springer.

    Chapter  Google Scholar 

  • Burke, E. K., Eckersley, A. J., McCollum, B., Petrovic, S., & Qu, R. (2006). Hybrid variable neighbourhood approaches to university exam timetabling (Computer Science Technical Report No. NOTTCS-TR-2006-2). University of Nottingham.

  • Burke, E. K., Mccollum, B., Meisels, A., Petrovic, S., & Qu, R. (2007). A graph-based hyper-heuristic for educational timetabling problems. European Journal of Operational Research, 176(1), 177–192.

    Article  Google Scholar 

  • Caramia, M., Dell’Olmo, P., & Italiano, G. F. (2001). New algorithms for examination timetabling. In LNCS: Vol. 1982. WAE’00: Proceedings of the 4th international workshop on algorithm engineering, September 5–8, 2000 (pp. 230–242). London: Springer.

    Google Scholar 

  • Carter, M. W. (1986). A survey of practical applications of examination timetabling algorithms. Operations Research, 34, 193–202.

    Article  Google Scholar 

  • Carter, M. W., & Laporte, G. (1996). Recent developments in practical examination timetabling. In E. K. Burke (Ed.), LNCS: Vol. 1152. Practice and theory of automated timetabling: selected papers from the 1st international conference (pp. 3–21). Berlin: Springer.

    Google Scholar 

  • Carter, M. W., Laporte, G., & Lee, S. Y. (1996). Examination timetabling: algorithms, strategies and applications. European Journal of Operational Research, 47, 373–383.

    Google Scholar 

  • Casey, S., & Thompson, J. (2003). Grasping the examination scheduling problem. In E. K. Burke (Ed.), LNCS: Vol. 2740. Practice and theory of automated timetabling IV (pp. 232–244). Berlin: Springer.

    Google Scholar 

  • Cheong, C. Y., Tan, K. C., & Veeravalli, B. (2007). Solving the exam timetabling problem via a multi-objective evolutionary algorithm—a more general approach. In Proceedings of the 2007 IEEE symposium on computational intelligence in scheduling (CI-Sched 2007) (pp. 165–172).

  • Côté, P., Wong, A., & Sabourin, R. (2005). A hybrid multi-objective evolutionary algorithm for the uncapacitated exam proximity problem. In E. Burke & M. Trick (Eds.), LNCS : Vol. 3616. PATAT 2004 (pp. 294–312). Berlin: Springer.

    Google Scholar 

  • Culberson, J., & Luo, F. (1996). Exploring the k-colorable landscape with iterated greedy. In D. S. Johnson & M. Trick (Eds.), DIMACS series in discrete mathematics and theoretical computer science: Vol. 26. Cliques, coloring and satisfiability: second DIMACS implementation challenge (pp. 499–520). Providence: Am. Math. Soc.

    Google Scholar 

  • Davis, L. (1991). Order-based genetic algorithms and the graph coloring problem. In Handbook of genetic algorithms (pp. 72–90). New York: Reinhold. Chap. 6.

    Google Scholar 

  • Deb, K. (2001). Multi-objective optimization using evolutionary algorithms. Chichester: Wiley.

    Google Scholar 

  • Laporte, G., & Desroches, S. (1984). Examination timetabling by computer. Computers & Operations Research, 11(4), 351–360.

    Article  Google Scholar 

  • Matula, D. W., Marble, G., & Isaacson, J. D. (1972). Graph coloring algorithms. In R. C. Read (Ed.), Graph theory and computing (pp. 104–122). New York: Academic Press.

    Google Scholar 

  • Merlot, L. T. G., Borland, N., Hughs, B. D., & Stuckey, P. J. (2003). A hybrid algorithm for the examination timetabling problem. In E. K. Burke & P. De Causmaecker (Eds.), LNCS: Vol. 2740. Practice and theory of automated timetabling IV (pp. 207–231). Berlin: Springer.

    Google Scholar 

  • Mumford, C. L. (2004). Simple population replacement strategies for a steady-state multi-objective evolutionary algorithm. In Proceedings of the 2004 genetic an evolutionary computation conference (GECCO) (pp. 1389–1400). Seattle, Washington, USA.

  • Mumford, C. L. (2006). New order-based crossovers for the graph coloring problem. In T. P. Runarsson, H.-G. Beyer, E. K. Burke, J. J. Merelo Guervós, L. D. Whitley, & X. Jao (Eds.), LNCS: Vol. 4193. Parallel problem solving from nature—PPSN IX, Proceedings of 9th international conference, Reykjavik, Iceland, September 9–13, 2006, (pp. 880–889). Berlin: Springer.

    Chapter  Google Scholar 

  • Mumford, C. L. (2007). An order based evolutionary approach to dual objective examination timetabling. In Proceedings of the 2007 IEEE symposium on computational intelligence in scheduling (CI-Sched 2007) (pp. 179–186).

  • Qu, R., Burke, E.K., McCollum, B., Merlot, L. T. G., & Lee, S. Y. (2008). A survey of search methodologies and automated system development for examination timetabling. Journal of Scheduling. doi:10.1007/s10951-008-0077-5.

    Google Scholar 

  • Schaerf, A. (1999). A survey of automated timetabling. Artificial Intelligence Review, 13, 87–127.

    Article  Google Scholar 

  • Thompson, J. M., & Dowsland, K. A. (1998). A robust simulated annealing based examination timetabling system. Computers & Operations Research, 25(7–8), 637–648.

    Article  Google Scholar 

  • Tsang, E. (1993). Foundations of constraint satisfaction. San Diego: Academic Press.

    Google Scholar 

  • Valenzuela, C. L. (2002). A simple evolutionary algorithm for multi-objective optimization (SEAMO). In Proceedings of the 2002 IEEE congress on evolutionary computation (CEC2002), Honolulu, Hawaii, 2002 (pp. 717–722). (C. L. Valenzuela is now known as C. L. Mumford).

  • Welsh, D. J. A., & Powell, M. B. (1967). An upper bound for the chromatic number of a graph and its application to timetabling problems. The Computer Journal, 10, 85–86.

    Article  Google Scholar 

  • Wong, A., Côté, P. & Sabourin, R., (2004). A hybrid MOEA for the capacitated exam proximity problem. In Proceedings of the 2004 IEEE congress on evolutionary computation, Portland, Oregon, 20–23 June 2004 (pp. 1495–1501). New York: IEEE Press.

    Google Scholar 

  • Yang, Y., & Petrovic, S. (2005). A novel similarity measure for heuristic selection in examination timetabling. In E. Burke & M. Trick (Eds.), LNCS: Vol. 3616. PATAT 2004 (pp. 377–396). Berlin: Springer.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christine L. Mumford.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mumford, C.L. A multiobjective framework for heavily constrained examination timetabling problems. Ann Oper Res 180, 3–31 (2010). https://doi.org/10.1007/s10479-008-0490-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-008-0490-3

Keywords

Navigation