Skip to main content
Log in

A hybrid ACO-GRASP algorithm for clustering analysis

  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

Cluster analysis is an important tool for data exploration and it has been applied in a wide variety of fields like engineering, economics, computer sciences, life and medical sciences, earth sciences and social sciences. The typical cluster analysis consists of four steps (i.e. feature selection or extraction, clustering algorithm design or selection, cluster validation and results interpretation) with feedback pathway. These steps are closely related to each other and affect the derived clusters. In this paper, a new metaheuristic algorithm is proposed for cluster analysis. This algorithm uses an Ant Colony Optimization to feature selection step and a Greedy Randomized Adaptive Search Procedure to clustering algorithm design step. The proposed algorithm has been applied with very good results to many data sets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aha, D. W., & Bankert, R. L. (1996). A comparative evaluation of sequential feature selection algorithms. In D. Fisher & J.-H. Lenx (Eds.), Artificial intelligence and statistics. New York: Springer.

    Google Scholar 

  • Al-Ani, A. (2005a). Feature subset selection using ant colony optimization. International Journal of Computational Intelligence, 2(1), 53–58.

    Google Scholar 

  • Al-Ani, A. (2005b). Ant colony optimization for feature subset selection. Transactions on Engineering, Computing and Technology, 4, 35–38.

    Google Scholar 

  • Al-Sultan, K. (1995). A tabu search approach to the clustering problem. Pattern Recognition, 28(9), 1443–1451.

    Article  Google Scholar 

  • Azzag, H., Guinot, C., Venturini, G. (2006). Data and text mining with hierarchical clustering ants. In A. Abraham, C. Grosan & V. Ramos (Eds.), Swarm intelligence in data mining (pp. 153–190).

  • Azzag, H., Venturini, G., Oliver, A., & Gu, C. (2007). A hierarchical ant based clustering algorithm and its use in three real-world applications. European Journal of Operational Research, 179, 906–922.

    Article  Google Scholar 

  • Babu, G., & Murty, M. (1993). A near-optimal initial seed value selection in k-means algorithm using a genetic algorithm. Pattern Recognition Letters, 14(10), 763–769.

    Article  Google Scholar 

  • Brown, D., & Huntley, C. (1992). A practical application of simulated annealing to clustering. Pattern Recognition, 25(4), 401–412.

    Article  Google Scholar 

  • Cano, J. R., Cordón, O., Herrera, F., & Sánchez, L. (2002). A GRASP algorithm for clustering. In F. J. Garijo, J. C. Riquelme, & M. Toro (Eds.), LNAI: Vol. 2527. IBERAMIA 2002 (pp. 214–223). Berlin: Springer.

    Chapter  Google Scholar 

  • Cantu-Paz, E., Newsam, S., & Kamath, C. (2004). Feature selection in scientific application. In Proceedings of the 2004 ACM SIGKDD international conference on knowledge discovery and data mining (pp. 788–793).

  • Celeux, G., & Govaert, G. (1992). A classification EM algorithm for clustering and two stochastic versions. Computational Statistics and Data Analysis, 14, 315–332.

    Article  Google Scholar 

  • Chen, L., Tu, L., & Chen, H. (2005). A novel ant clustering algorithm with digraph. In L. Wang, K. Chen, & Y. S. Ong (Eds.), LNCS: Vol. 3611. ICNC 2005 (pp. 1218–1228). Berlin: Springer.

    Google Scholar 

  • Chu, S., & Roddick, J. (2000). A clustering algorithm using the tabu search approach with simulated annealing, In N. Ebecken & C. Brebbia (Eds.), Data mining II-proceedings of second international conference on data mining methods and databases (pp. 515–523), Cambridge, U.K.

  • Cowgill, M., Harvey, R., & Watson, L. (1999). A genetic algorithm approach to cluster analysis. Computers and Mathematics with Applications, 37, 99–108.

    Article  Google Scholar 

  • Dorigo, M., & Stutzle, T. (2004). Ant colony optimization. Cambridge: Bradford Book.

    Book  Google Scholar 

  • Dorigo, M., Maniezzo, V., & Colorni, A. (1996). Ant system: optimization by a colony of cooperating agents. IEEE Transactions on Systems, Man, and Cybernetics – Part B, 26(1), 29–41.

    Article  Google Scholar 

  • Feo, T. A., & Resende, M. G. C. (1995). Greedy randomized adaptive search procedure. Journal of Global Optimization, 6, 109–133.

    Article  Google Scholar 

  • Glover, F. (1989). Tabu search I. ORSA Journal on Computing, 1(3), 190–206.

    Google Scholar 

  • Glover, F. (1990). Tabu search II. ORSA Journal on Computing, 2(1), 4–32.

    Google Scholar 

  • Goldberg, D. E. (1989). Genetic algorithms in search, optimization, and machine learning. Massachusetts: Addison-Wesley.

    Google Scholar 

  • He, Y., Hui, S. C., & Sim, Y. (2006). A novel ant-based clustering approach for document clustering. In H. T. Ng (Eds.), LNCS: Vol. 4182. AIRS 2006 (pp. 537–544). Berlin: Springer.

    Google Scholar 

  • Holland, J. H. (1975). Adaptation in natural and artificial systems. Ann Arbor: University of Michigan Press.

    Google Scholar 

  • Jain, A., & Zongker, D. (1997). Feature selection: evaluation, application, and small sample performance. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19, 153–158.

    Article  Google Scholar 

  • Jain, A. K., Murty, M. N., & Flynn, P. J. (1999). Data clustering: a review. ACM Computing Surveys, 31(3), 264–323.

    Article  Google Scholar 

  • Janson, S., & Merkle, D. (2005). A new multi-objective particle swarm optimization algorithm using clustering applied to automated docking. In M. J. Blesa (Eds.), LNCS: Vol. 3636. HM 2005 (pp. 128–141). Berlin: Springer.

    Google Scholar 

  • Jouve, P.-E., & Nicoloyannis,  N. (2005). A filter feature selection method for clustering. In M.-S. Hacid (Eds.), LNAI: Vol. 3488. ISMIS 2005 (pp. 583–593). Berlin: Springer.

    Google Scholar 

  • Kao, Y., & Cheng, K. (2006). An ACO-based clustering algorithm. In M. Dorigo (Eds.), LNCS: Vol. 4150. ANTS 2006 (pp. 340–347). Berlin: Springer.

    Google Scholar 

  • Kao, Y.-T., Zahara, E., & Kao, I.-W. (2007). A hybridized approach to data clustering. Expert Systems with Applications. doi:10.1016/j.eswa.2007.01.028.

    Google Scholar 

  • Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization. In Proceedings of 1995 IEEE international conference on neural networks (Vol. 4, pp. 1942–1948).

  • Kira, K., & Rendell, L. (1992). A practical approach to feature selection. In Proceedings of the ninth international conference on machine learning, Aberdeen, Scotland (pp. 249–256).

  • Li, Z., & Tan, H.-Z. (2006). A combinational clustering method based on artificial immune system and support vector machine. In B. Gabrys, R. J. Howlett, & L. C. Jain (Eds.), LNAI: Vol. 4251. KES 2006, Part I (pp. 153–162). Berlin: Springer.

    Google Scholar 

  • Liao, S.-H., & Wen, C.-H. (2007). Artificial neural networks classification and clustering of methodologies and applications – literature analysis from 1995 to 2005. Expert Systems with Applications, 32, 1–11.

    Article  Google Scholar 

  • Liu, Y., Chen, K., Liao, X., & Zhang, W. (2004). A genetic clustering method for intrusion detection. Pattern Recognition, 37, 927–942.

    Article  Google Scholar 

  • Liu, Y., Liu, Y., Wang, L., & Chen, K. (2005). A hybrid tabu search based clustering algorithm. In R. Khosla (Eds.), LNAI: Vol. 3682. KES 2005 (pp. 186–192). Berlin: Springer.

    Google Scholar 

  • Marinakis, Y., Migdalas, A., & Pardalos, P. M. (2005a). Expanding neighborhood GRASP for the traveling salesman problem. Computational Optimization and Applications, 32, 231–257.

    Article  Google Scholar 

  • Marinakis, Y., Migdalas, A., & Pardalos, P. M. (2005b). A hybrid genetic-GRASP algorithm using Langrangean relaxation for the traveling salesman problem. Journal of Combinatorial Optimization, 10, 311–326.

    Article  Google Scholar 

  • Marinakis, Y., Marinaki, M., Doumpos, M., Matsatsinis, N., & Zopounidis, C. (2008). Optimization of nearest neighbor classifiers via metaheuristic algorithms for credit risk assessment. Journal of Global Optimization, 42, 279–293.

    Article  Google Scholar 

  • Maulik, U., & Bandyopadhyay, S. (2000). Genetic algorithm-based clustering technique. Pattern Recognition, 33, 1455–1465.

    Article  Google Scholar 

  • Meng, L., Wu, Q. H., & Yong, Z. Z. (2000). A faster genetic clustering algorithm. In S. Cagnoni (Eds.), LNCS: Vol. 1803. EvoWorkshops 2000 (pp. 22–33). Berlin: Springer.

    Google Scholar 

  • Mirkin, B. (1996). Mathematical classification and clustering. Dordrecht: Kluwer.

    Google Scholar 

  • Nasraoui, O., Gonzalez, F., Cardona, C., Rojas, C., & Dasgupta, D. (2003). A scalable artificial immune system model for dynamic unsupervised learning. In E. Cantú-Paz (Eds.), LNCS: Vol. 2723. GECCO 2003 (pp. 219–230). Berlin: Springer.

    Chapter  Google Scholar 

  • Ng, M. K. (2000). A note on constrained k-means algorithms. Pattern Recognition, 33, 515–519.

    Article  Google Scholar 

  • Paterlini, S., & Krink, T. (2006). Differential evolution and particle swarm optimization in partitional clustering. Computational Statistics and Data Analysis, 50, 1220–1247.

    Article  Google Scholar 

  • Ray, S., & Turi, R. H. (1999). Determination of number of clusters in K-means clustering and application in colour image segmentation. In Proceedings of the 4th international conference on advances in pattern recognition and digital techniques (ICAPRDT99), Calcutta, India.

  • Resende, M. G. C., & Ribeiro, C. C. (2003). Greedy randomized adaptive search procedures. In F. Glover & G. A. Kochenberger (Eds.), Handbook of metaheuristics (pp. 219–249). Boston: Kluwer.

    Google Scholar 

  • Rokach, L., & Maimon, O. (2005). Clustering methods. In O. Maimon & L. Rokach (Eds.), Data mining and knowledge discovery handbook (pp. 321–352). New York: Springer.

    Chapter  Google Scholar 

  • Selim, S., & Alsultan, K. (1991). A simulated annealing algorithm for the clustering problems. Pattern Recognition, 24(10), 1003–1008.

    Article  Google Scholar 

  • Shelokar, P. S., Jayaraman, V. K., & Kulkarni, B. D. (2004). An ant colony approach for clustering. Analytica Chimica Acta, 509, 187–195.

    Article  Google Scholar 

  • Shen, H.-Y., Peng, X.-Q., Wang, J.-N., & Hu, Z.-K. (2005a). A mountain clustering based on improved PSO algorithm. In L. Wang, K. Chen, & Y. S. Ong (Eds.), LNCS: Vol. 3612. ICNC 2005 (pp. 477–481). Berlin: Springer.

    Google Scholar 

  • Shen, J., Chang, S. I., Lee, E. S., Deng, Y., & Brown, S. J. (2005b). Determination of cluster number in clustering microarray data. Applied Mathematics and Computation, 169, 1172–1185.

    Article  Google Scholar 

  • Sheng, W., & Liu, X. (2006). A genetic k-medoids clustering algorithm. Journal of Heuristics, 12, 447–466.

    Article  Google Scholar 

  • Sherafat, V., Nunes de Castro, L., & Hruschka, E. R. (2004). TermitAnt: an ant clustering algorithm improved by ideas from termite colonies. In N. R. Pal (Eds.), LNCS: Vol. 3316. ICONIP 2004 (pp. 1088–1093). Berlin: Springer.

    Google Scholar 

  • Sun, J., Xu, W., & Ye, B. (2006). Quantum-behaved particle swarm optimization clustering algorithm. In X. Li, O. R. Zaiane, & Z. Li (Eds.), LNAI: Vol. 4093. ADMA 2006 (pp. 340–347). Berlin: Springer.

    Google Scholar 

  • Sung, C., & Jin, H. (2000). A tabu-search-based heuristic for clustering. Pattern Recognition, 33, 849–858.

    Article  Google Scholar 

  • Tarsitano, A. (2003). A computational study of several relocation methods for k-means algorithms. Pattern Recognition, 36, 2955–2966.

    Article  Google Scholar 

  • Tsang, C.-H., & Kwong, S. (2006). Ant colony clustering and feature extraction for anomaly intrusion detection. Studies in Computational Intelligence (SCI), 34, 101–123.

    Article  Google Scholar 

  • Tseng, L., & Yang, S. (2000). A genetic clustering algorithm for data with non-spherical-shape clusters. Pattern Recognition, 33, 1251–1259.

    Article  Google Scholar 

  • Tseng, L., & Yang, S. (2001). A genetic approach to the automatic clustering problem. Pattern Recognition, 34, 415–424.

    Article  Google Scholar 

  • Wu, F.-X., Zhang, W. J., & Kusalik, A. J. (2003). A genetic k-means clustering algorithm applied to gene expression data. In Y. Xiang & B. Chaib-draa (Eds.), LNAI : Vol. 2671. AI 2003 (pp. 520–526). Berlin: Springer.

    Google Scholar 

  • Xu, R., & Wunsch, D., II (2005). Survey of clustering algorithms. IEEE Transactions on Neural Networks, 16(3), 645–678.

    Article  Google Scholar 

  • Yang, Y., & Kamel, M. S. (2006). An aggregated clustering approach using multi-ant colonies algorithms. Pattern Recognition, 39, 1278–1289.

    Article  Google Scholar 

  • Yeh, J.-Y., & Fu, J. C. (2007). A hierarchical genetic algorithm for segmentation of multi-spectral human-brain MRI. Expert Systems with Applications. doi:10.1016/j.eswa.2006.12.012.

    Google Scholar 

  • Younsi, R., & Wang, W. (2004). A new artificial immune system algorithm for clustering. In Z. R. Yang (Eds.), LNCS: Vol. 3177. IDEAL 2004 (pp. 58–64). Berlin: Springer.

    Google Scholar 

  • Zhang, C., & Hu, H. (2005). Ant colony optimization combining with mutual information for feature selection in support vector machines. In S. Zhang & R. Jarvis (Eds.), LNAI: Vol. 3809. AI 2005 (pp. 918–921). Berlin: Springer.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Constantin Zopounidis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marinakis, Y., Marinaki, M., Doumpos, M. et al. A hybrid ACO-GRASP algorithm for clustering analysis. Ann Oper Res 188, 343–358 (2011). https://doi.org/10.1007/s10479-009-0519-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-009-0519-2

Keywords

Navigation