Skip to main content
Log in

The multichoice coalition value

  • Published:
Annals of Operations Research Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

In this paper we define a solution for multichoice games which is a generalization of the Owen coalition value (Lecture Notes in Economics and Mathematical Systems: Essays in Honor of Oskar Morgenstern, Springer, New York, pp. 76–88, 1977) for transferable utility cooperative games and the Egalitarian solution (Peters and Zanks, Ann. Oper. Res. 137, 399–409, 2005) for multichoice games. We also prove that this solution can be seen as a generalization of the configuration value and the dual configuration value (Albizuri et al., Games Econ. Behav. 57, 1–17, 2006) for transferable utility cooperative games.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albizuri, M. J., Aurrekoetxea, J., & Zarzuelo, J. M. (2006). Configuration values: Extensions of the coalitional Owen value. Games and Economic Behavior, 57, 1–17.

    Article  Google Scholar 

  • Calvo, E., & Santos, C. J. (2000). A value for multichoice games. Mathematical Social Sciences, 40, 341–354.

    Article  Google Scholar 

  • Calvo, E., & Santos, C. J. (2001). A value for mixed action-set games. International Journal of Game Theory, 30, 61–78.

    Article  Google Scholar 

  • Derks, J., & Peters, H. (1993). A Shapley value for games with restricted coalitions. International Journal of Game Theory, 21, 351–360.

    Article  Google Scholar 

  • Hsiao, C.-R., & Raghavan, T. E. S. (1993). Shapley value for multi-choice cooperative games. Games and Economic Behavior, 5, 240–256.

    Article  Google Scholar 

  • Klijn, F., Slikker, M., & Zarzuelo, J. (1999). Characterizations of a multi-choice value. International Journal of Game Theory, 28, 521–532.

    Article  Google Scholar 

  • Lehrer, E. (1988). An axiomatization of the Banzhaf value. International Journal of Game Theory, 17, 89–99.

    Article  Google Scholar 

  • Owen, G. (1977). Values of games with a priori unions. In R. Hernn & O. Moschlin (Eds.), Lecture notes in economics and mathematical systems: Essays in honor of Oskar Morgenstern (pp. 76–88). New York: Springer.

    Google Scholar 

  • Peters, H., & Zank, H. (2005). The egalitarian solution for multichoice games. Annals of Operations Research, 137, 399–409.

    Article  Google Scholar 

  • Shapley, L. S. (1953). A value for n-person games. In A. W. Tucker & H. W. Kuhn (Eds.), Contributions to the theory of games II (pp. 307–317). Princeton: Princeton University Press.

    Google Scholar 

  • van den Nouweland, A., Potters, J., Tijs, S., & Zarzuelo, J. (1995). Cores and related solution concepts for multi-choice games. ZOR—Mathematical Methods of Operations Research, 41, 289–311.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Josune Albizuri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Albizuri, M.J. The multichoice coalition value. Ann Oper Res 172, 363–374 (2009). https://doi.org/10.1007/s10479-009-0634-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-009-0634-0

Keywords

Navigation