Skip to main content
Log in

Learning in nonlinear pricing with unknown utility functions

  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

Optimal screening is one of the basic models of contracting under incomplete information, and we study the problem in a quality pricing application. We present a simple numerical method for solving the pricing problem when the firm has limited information about the buyers’ utility functions. In the method, the firm learns the optimal price schedule as the demand data is collected. We examine what the firm can learn about the preferences by observing the sales, and how the revealed information can be used in adjusting the quality-price bundles to increase the profit. We analyze the properties of the solution and derive the first-order optimality conditions under different assumptions. We show that the problem can be solved by making use of these optimality conditions together with the buyers’ marginal valuations. The firm can estimate the marginal valuations either by offering linear tariffs or by selling test bundles near the current solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anand, K. S., & Aron, R. (2003). Group buying on the web: A comparison of price-discovery mechanisms. Management Science, 49(11), 1546–1562.

    Article  Google Scholar 

  • Armstrong, M. (1996). Multiproduct nonlinear pricing. Econometrica, 64, 51–75.

    Article  Google Scholar 

  • Aron, R., Sundararajan, A., & Viswanathan, S. (2006). Intelligent agents in electronic markets for information goods: Customization, preference revelation and pricing. Decision Support Systems, 41, 764–786.

    Article  Google Scholar 

  • Basov, S. (2005). Multidimensional screening. Heidelberg: Springer.

    Google Scholar 

  • Berg, K., & Ehtamo, H. (2008). Multidimensional screening: Online computation and limited information. In ICEC 2008: ACM international conference proceeding series: Vol. 42. Proceedings of the 10th international conference on electronic commerce. Innsbruck, Austria.

  • Brooks, C. H., Gazzale, R. S., Das, R., Kephart, J. O., Mackie-Mason, J. K., & Durfee, E. H. (2002). Model selection in an information economy: Choosing what to learn. Computational Intelligence, 18(4), 566–582.

    Article  Google Scholar 

  • Carlier, G. (2002). Nonparametric adverse selection problems. Annals of Operations Research, 114, 71–82.

    Article  Google Scholar 

  • Conitzer, V., & Sandholm, T. (2002). Complexity of mechanism design. In Proceedings of the 18th annual conference on uncertainty in artificial intelligence (UAI-02) (pp. 103–111).

  • Creane, A. (2002). Uncertain product quality, optimal pricing and product development. Annals of Operations Research, 114, 83–103.

    Article  Google Scholar 

  • Dash, R. K., Jennings, N. R., & Parkes, D. C. (2003). Computational-mechanism design: A call to arms. IEEE Intelligent Systems: Special Issue on Agents and Markets, 18, 40–47.

    Google Scholar 

  • Ehtamo, H., Kitti, M., & Hämäläinen, R. P. (2002). Recent studies on incentive design problems. In G. Zaccour (Ed.), Advances in computational management science: Vol. 5. Optimal control and differential games, Essays in honor of Steffen Jorgensen (pp. 121–134).

  • Ehtamo, H., Berg, K., & Kitti, M. (2009). An adjustment scheme for nonlinear pricing problem with two buyers. European Journal of Operational Research. doi:10.1016/j.ejor.2009.01.037.

    Google Scholar 

  • Elmaghraby, W., & Keskinocak, P. (2003). Dynamic pricing in the presence of inventory considerations: Research overview, current practices, and future directions. Management Science, 49(10), 1287–1309.

    Article  Google Scholar 

  • Fudenberg, D., & Tirole, J. (1991). Game theory. Cambridge: MIT Press.

    Google Scholar 

  • Fudenberg, D., & Levine, D. K. (1999). The theory of learning in games. Cambridge: MIT Press.

    Google Scholar 

  • Geoffrion, A. M., & Krishnan, R. (2003). Special issue on e-business and management science. Management Science, 49(10–11).

    Google Scholar 

  • Mas-Colell, A., Whinston, M. D., & Green, J. R. (1995). Microeconomic theory. New York: Oxford University Press.

    Google Scholar 

  • Maskin, E., & Riley, J. (1984). Monopoly with incomplete information. The RAND Journal of Economics, 15, 171–196.

    Article  Google Scholar 

  • Mirrlees, J. A. (1971). An exploration in the theory of optimum income taxation. Review of Economic Studies, 38, 175–208.

    Article  Google Scholar 

  • Mussa, M., & Rosen, S. (1978). Monopoly and product quality. Journal of Economic Theory, 18, 301–317.

    Article  Google Scholar 

  • Nisan, N., & Ronen, A. (2001). Algorithmic mechanism design. Games and Economic Behavior, 35, 166–196.

    Article  Google Scholar 

  • Raju, C. V. L., Narahari, Y., & Ravikumar, K. (2006). Learning dynamic prices in electronic retail markets with customer segmentation. Annals of Operations Research, 143, 59–75.

    Article  Google Scholar 

  • Rochet, J.-C., & Chone, P. (1998). Ironing, sweeping, and multidimensional screening. Econometrica, 66, 783–826.

    Article  Google Scholar 

  • Rochet, J.-C., & Stole, L. A. (2003). The economics of multidimensional screening. In M. Dewatripont, L. P. Hansen, & S. J. Turnovsky (Eds.), Advances in economics and econometrics, theory and applications, Eighth World Congress, Cambridge.

  • Räsänen, M., Ruusunen, J., & Hämäläinen, R. P. (1997). Optimal tariff design under consumer self-selection. Energy Economics, 19, 151–167.

    Article  Google Scholar 

  • Sandholm, T. (2007). Perspectives on multiagent learning. Artificial Intelligence, 171, 382–391.

    Article  Google Scholar 

  • Spence, M. (1980). Multi-product quantity-dependent prices and profitability constraints. Review of Economic Studies, 47, 821–841.

    Article  Google Scholar 

  • Voelckner, F. (2006). An empirical comparison of methods measuring consumers’ willingness to pay. Marketing Letters, 17, 137–149.

    Article  Google Scholar 

  • Wertenbroch, K., & Skiera, B. (2002). Measuring consumers’ willingness to pay at the point of purchase. Journal of Marketing Research, 39(2), 228–241.

    Article  Google Scholar 

  • Wilson, R. (1993). Nonlinear pricing. New York: Oxford University Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kimmo Berg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berg, K., Ehtamo, H. Learning in nonlinear pricing with unknown utility functions. Ann Oper Res 172, 375–392 (2009). https://doi.org/10.1007/s10479-009-0640-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-009-0640-2

Keywords

Navigation