Skip to main content
Log in

A filter-and-fan approach to the 2D HP model of the protein folding problem

  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

We examine a prominent and widely-studied model of the protein folding problem, the two-dimensional (2D) HP model, by means of a filter-and-fan (F&F) solution approach. Our method is designed to generate compound moves that explore the solution space in a dynamic and adaptive fashion. Computational results for standard sets of benchmark problems show that the F&F algorithm is highly competitive with the current leading algorithms, requiring only a single solution trial to obtain best known solutions to all problems tested, in contrast to a hundred or more trials required in the typical case to evaluate the performance of the best of the alternative methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anfinsen, C. B., Haber, E., Sela, M., & White, F. H. (1961). The kinetics of formation of native ribonuclease during oxidation of the reduced polypeptide chain. Proceedings of the National Academy of Sciences, 47(9), 1309–1314.

    Article  Google Scholar 

  • Backofen, R. (2001). The protein structure prediction problem: a constraint optimization approach using a new lower bound. Constraints, 6, 223–255.

    Article  Google Scholar 

  • Berman, H. M., Westbrook, J., Feng, Z. K., Gilliland, G., Bhat, T. N., Weissig, H., Shindyalov, I. N., & Bourne, P. E. (2000). The protein data bank. Nucleic Acids Research, 28(1), 235–242.

    Article  Google Scholar 

  • Bornberg-Bauer, E. (1997). Chain growth algorithms for HP-type lattice proteins. In Proceedings of the first annual international conferences on computational molecular biology (RECOMB97) (pp. 47–55). New York: ACM Press.

    Chapter  Google Scholar 

  • Chan, H. S., & Dill, K. A. (1993). The protein folding problem. Physics Today, 46(2), 24–32.

    Article  Google Scholar 

  • Chikenji, G., Kiduchi, M., & Iba, Y. (1999). Multi-self-overlap ensemble for protein folding: ground state search and thermodynamics. Physical Review Letters, 83(9), 1886–1889.

    Article  Google Scholar 

  • Covell, D. G., & Jernigan, R. L. (1990). Conformation of folded proteins in restricted spaces. Biochemistry, 29, 3287–3294.

    Article  Google Scholar 

  • Crescenzi, P., Goldman, D., Papadimitriou, C., Piccolboni, A., & Yanakakis, M. (1998). On the complexity of protein folding. In Proceedings of the 13th annual ACM symposium of theory of computing (STOC 98) (pp. 597–603).

  • Cutello, V., Morelli, G., Nicosia, G., & Pavone, M. (2005). Immune algorithms with aging operators for the string folding problem and the protein folding problem. In Lecture notes in computer sciences (Vol. 3348, pp. 80–90). Berlin: Springer.

    Google Scholar 

  • Cutello, V., Nicosia, G., Pavone, M., & Timmis, J. (2006). An immune algorithm for protein structure prediction on lattice models. IEEE Transaction on Evolutionary Computation.

  • Dandekar, T., & Argos, P. (1994). Folding the main chain of small proteins with genetic algorithm. Journal of Molecular Biology, 236, 844–861.

    Article  Google Scholar 

  • Dill, K. A. (1985). Theory for the folding and stability of globular proteins. Biochemistry, 24(6), 1501–1509.

    Article  Google Scholar 

  • Dongarra, J. J. (2006). Performance of various computers using standard linear equations software (Linpack Benchmark Report). University of Tennessee Computer Science Technical Report, CS-89-85.

  • Glover, F. (1977). Heuristics for integer programming using surrogate constraints. Decision Sciences, 8(1), 156–166.

    Article  Google Scholar 

  • Glover, F. (1989). Tabu search—part I. ORSA Journal on Computing, 1(3), 190–206.

    Google Scholar 

  • Glover, F. (1992). New ejection chain and alternating path methods for traveling salesman problems. Computer Science and Operations Research, 449–509.

  • Glover, F. (1995). Tabu thresholding: improved search by nonmonotonic trajectories. ORSA Journal on Computing, 7(4), 426–442.

    Google Scholar 

  • Glover, F. (1996a). Ejection chains, reference structures and alternating path methods for traveling salesman problems. Discrete Applied Mathematics, 65, 223–253.

    Article  Google Scholar 

  • Glover, F. (1996b). Tabu search and adaptive memory programming—advances, applications and challenges. In Barr, Helgason, & Kennington (Eds.), Interfaces in computer science and operations research (pp. 1–75). Dordrecht: Kluwer Academic.

    Google Scholar 

  • Glover, F. (1998). A template for scatter search and path relinking. In J.-K. Hao, E. Lutton, E. Ronald, M. Schoenauer, & D. Snyers (Eds.), Lecture notes in computer science : Vol. 1363. Artificial evolution (pp. 3–51). Berlin: Springer.

    Chapter  Google Scholar 

  • Glover, F. (1999). Scatter search and path relinking. In D. Corne, M. Dorigo, & F. Glover (Eds.), New ideas in optimization (pp. 297–316). New York: McGraw–Hill.

    Google Scholar 

  • Glover, F., & Laguna, M. (1993). Tabu search. In C. Reeves (Ed.), Modern heuristic techniques for combinatorial problems (pp. 71–140). Oxford: Blackwell.

    Google Scholar 

  • Glover, F., & Laguna, M. (1997). Tabu search. Boston: Kluwer Academic.

    Book  Google Scholar 

  • Goodman, J., Sokal, A. D. (1986). Multigrid Monte Carlo method for lattice field theories. Physics Review Letters, 56(10), 1015–1018.

    Article  Google Scholar 

  • Grassberger, P. (1997). Pruned-enriched Rosenbluth method: simulations of theta polymers of chain. Physical Review, 56(3), 3682–3693.

    Google Scholar 

  • Hart, W. E., & Istrail, S. (1996). Fast protein folding in the hydrophobic-hydrophilic model within three-eighth of optimal. Journal of Computational Biology, 3(1), 53–96.

    Article  Google Scholar 

  • Hart, W. E., & Istrail, S. (1997). Lattice and off-lattice side chain models of protein folding: linear time structure prediction better than 86% of optimal. Journal of Computational Biology, 4(3), 241–259.

    Article  Google Scholar 

  • Hirst, J. D. (1999). The evolutionary landscape of functional model proteins. Protein Engineering, 12, 721–726.

    Article  Google Scholar 

  • Hsu, H. P., Mehra, V., Nadler, W., & Grassberger, P. (2003a). Growth algorithms for lattice heteropolymers at low temperatures. Journal of Chemical Physics, 118(1), 444–451.

    Article  Google Scholar 

  • Hsu, H. P., Mehra, V., Nadler, W., & Grassberger, P. (2003b). Growth-based optimization algorithm for lattice heteropolymers. Physical Review E, 68(2), 021113.

    Article  Google Scholar 

  • Jiang, T., Cui, Q., Shi, G., & Ma, S. (2003). Protein folding simulations of the hydrophobic-hydrophilic model by combining tabu search with genetic algorithms. Journal of Chemical Physics, 119(8), 4592–4596.

    Article  Google Scholar 

  • Konig, R., & Dandekar, T. (1999). Improving genetic algorithms for protein folding simulation by systematic crossover. BioSystems, 50, 17–25.

    Article  Google Scholar 

  • Krasnogor, N., Pelta, D., Lopez, P. M., Mocciola, P., & de la Canal, E. (1998). Genetic algorithms for the protein folding problem: a critical review. In Proceedings of engineering of intelligence systems (pp. 353–360). ICSC Academic Press.

  • Krasnogor, N., Hart, W. E., Smith, J. E., & Pelta, D. A. (1999). Protein structure prediction with evolutionary algorithms. In Proceedings of the 1999 international genetic and evolutionary computation conference (GECCO99), San Mateo CA (pp. 1596–1601).

  • Krasnogor, N., Blackburnem, B., Pelta, D. A., & Burk, E. K. (2002). Multimeme algorithms for protein structure prediction. In Lecture notes in computer science : Vol. 2439. Proceedings of parallel problem solving from nature (pp. 769–778). Berlin: Springer.

    Google Scholar 

  • Lau, K. F., & Dill, K. A. (1989). A lattice statistical mechanics model of the conformational and sequence spaces of proteins. Macromolecules, 22, 2986–3997.

    Article  Google Scholar 

  • Lengauer, T. (1993). Algorithmic research problems in molecular bioinformatics. In Proceedings of the second Israel symposium on theory of computing systems (ISTCS), Natanya, Israel (pp. 177–192).

  • Lesh, N., Mitzenmacher, M., & Whitesides, S. (2003). A complete and effective move set for simple protein folding. In Proceedings of the 7th annual international conference on research in computational molecular biology (RECOMB) (pp. 188–195). New York: ACM Press.

    Chapter  Google Scholar 

  • Liang, F., & Wong, W. H. (2001). Evolutionary Monte Carlo for protein folding simulations. Journal of Chemical Physics, 115(7), 3374–3380.

    Article  Google Scholar 

  • Nunes, N. J., Chen, K., & Hutchinson (1996). Flexible lattice model to study protein folding. Journal of Physical Chemistry, 100(24), 10443–10449.

    Article  Google Scholar 

  • Pelta, D. A., & Krasnogor, N. (2004). Multimeme algorithms using fuzzy logic based memes for protein structure prediction. In Recent advances in memetic algorithms. Berlin: Springer.

    Google Scholar 

  • Ramakrishnan, R., Ramachandran, B., & Pekny, J. F. (1997). A dynamic Monte Carlo algorithm for exploration of dense conformational spaces in heteropolymers. Journal of Chemical Physics, 106(6), 2418–2424.

    Article  Google Scholar 

  • Rego, C., & Glover, F. (2002). Local search and metaheuristics for the travelling salesman problem. In G. Gutin & A. Punnen (Eds.), The travelling salesman problem and its variations (pp. 309–368). Dordrecht: Kluwer Academic.

    Google Scholar 

  • Richards, F. M. (1991). The protein folding problem. Scientific American, 264(1), 54-7, 60-3.

    Article  Google Scholar 

  • Shmygelska, A., & Hoos, H. H. (2003). An improved ant colony optimization algorithm for the 2D HP protein folding problem. In Lecture notes in computer science. Proceedings of advances in artificial intelligence, AI 2003 (pp. 400–417). Berlin: Springer.

    Google Scholar 

  • Shmygelska, A., & Hoos, H. H. (2005). An ant colony optimization algorithm for the 2D and 3D hydrophobic polar protein folding problem. BMC Bioinformatics, 6(1), 30.

    Article  Google Scholar 

  • Shmygelska, A., Hernandez, R., & Hoos, H. H. (2002). An ant colony algorithm for the 2D HP protein folding problem. In Lecture notes in computer science : Vol. 2463. Proceedings of the 3rd workshop on ant algorithms (pp. 40–52). Berlin: Springer.

    Google Scholar 

  • Siepmann, J. I., Frenkel, D. (1992). Configurational-bias Monte Carlo: a new sampling scheme for flexible chains. Molecular Physics, 75, 59–70.

    Article  Google Scholar 

  • Skolnick, J., & Kolinski, A. (1990). Simulations of the folding of globular proteins. Science, 250, 1121–1125.

    Article  Google Scholar 

  • Socci, N. D., & Onuchic, J. N. (1994). Folding kinetics of protein like heteropolymers. Journal of Chemical Physics, 101(2), 1519–1528.

    Article  Google Scholar 

  • Unger, R., & Moult, J. (1993). Genetic algorithms for protein folding simulations. Journal of Molecular Biology, 231, 75–81.

    Article  Google Scholar 

  • Zhang, J., Kou, S. C., & Liu, J. S. (2007). Biopolymer structure simulation and optimization via fragment regrowth Monte Carlo. Journal of Chemical Physics, 126, 225101(1)–225101(7).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to César Rego.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rego, C., Li, H. & Glover, F. A filter-and-fan approach to the 2D HP model of the protein folding problem. Ann Oper Res 188, 389–414 (2011). https://doi.org/10.1007/s10479-009-0666-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-009-0666-5

Keywords

Navigation