Abstract
The fast development of sequencing techniques in the recent past has required an urgent development of efficient and accurate haplotype inference tools. Besides being a crucial issue in genetics, haplotype inference is also a challenging computational problem. Among others, pure parsimony is a viable modeling approach to solve the problem of haplotype inference and also an interesting NP-hard problem in itself. Recently, the introduction of SAT-based methods, including pseudo-Boolean optimization (PBO) methods, has produced very efficient solvers. This paper provides a detailed description of RPoly, a PBO approach for the haplotype inference by pure parsimony (HIPP) problem. Moreover, an extensive evaluation of existent HIPP solvers, on a comprehensive set of instances, confirms that RPoly is currently the most efficient and robust HIPP approach.
Similar content being viewed by others
References
Aloul, F., Ramadi, A., Markov, I., & Sakallah, K. (2002). Generic ILP versus specialized 0-1 ILP: an update. In IEEE/ACM international conference on computer-aided design (ICCAD’02) (pp. 450–457).
Brown, D., & Harrower, I. (2004). A new integer programming formulation for the pure parsimony problem in haplotype analysis. In LNCS: Vol. 3240. Workshop on algorithms in bioinformatics (WABI’04) (pp. 254–265).
Brown, D., & Harrower, I. (2006). Integer programming approaches to haplotype inference by pure parsimony. IEEE/ACM Transactions on Computational Biology and Bioinformatics (TCBB’06), 3(2), 141–154.
Browning, S., & Browning, B. (2007). Rapid and accurate haplotype phasing and missing data inference for whole genome association studies using localized haplotype clustering. American Journal of Human Genetics (AJHG), 81(5), 1084–1097.
Burgtorf, C., Kepper, P., Hoehe, M., Schmitt, C., Reinhardt, R., Lehrach, H., & Sauer, S. (2003). Clone-based systematic haplotyping (CSH): a procedure for physical haplotyping of whole genomes. Genome Research, 13(12), 2717–2724.
Daly, M., Rioux, J., Schaffner, S., Hudson, T., & Lander, E. (2001). High-resolution haplotype structure in the human genome. Nature Genetics, 29, 229–232.
Delaneau, O., Coulonges, C., & Zagury, J. F. (2008). Shape-IT: new rapid an accurate algorithm for haplotype inference. BMC Bioinformatics, 9, 540.
Drysdale, C., McGraw, D., Stack, C., Stephens, J., Judson, R., Nandabalan, K., Arnold, K., Ruano, G., & Liggett, S. (2000). Complex promoter and coding region β 2-adrenergic receptor haplotypes alter receptor expression and predict in vivo responsiveness. In National academy of sciences (NAS) (Vol. 97, pp. 10.483–10.488).
Eén, N., & Sörensson, N. (2003). An extensible SAT-solver. In LNCS: vol. 2919, International conference on theory and applications of satisfiability testing (SAT’03) (pp. 502–518).
Eén, N., & Sörensson, N. (2006). Translating pseudo-Boolean constraints into SAT. Journal on Satisfiability, Boolean Modeling and Computation, 2, 1–26.
Erdem, E., & Türe, F. (2008). Efficient haplotype inference with answer set programming. In National conference on artificial intelligence (AAAI’08) (pp. 436–441).
Excoffier, L., & Slatkin, M. (1995). Maximum likelihood estimation of molecular haplotype frequencies in a diploid population. Molecular Biology and Evolution, 12(5), 921–927.
Gaspero, L., & Roli, A. (2008). Stochastic local search for large-scale instances of the haplotype inference problem by pure parsimony. Journal of Algorithms: Algorithms in Logic, Informatics and Cognition, 63(1–3), 55–69.
Graça, A., Marques-Silva, J., Lynce, I., & Oliveira, A. (2007). Efficient haplotype inference with pseudo-Boolean optimization. In LNCS: Vol. 4545, Algebraic biology (AB’07) (pp. 125–139).
Graça, A., Lynce, I., Marques-Silva, J., & Oliveira, A. (2008a). Generic ILP vs specialized 0-1 ILP for haplotype inference. In Workshop on constraint based methods for bioinformatics (WCB’08).
Graça, A., Marques-Silva, J., Lynce, I., & Oliveira, A. (2008b). Efficient haplotype inference with combined CP and OR techniques. In LNCS: Vol. 5015, International conference on integration of AI and OR techniques in constraint programming for combinatorial optimization problems (CPAIOR’08) (pp. 308–312).
Gusfield, D. (2003). Haplotype inference by pure parsimony. In Annual symposium on combinatorial pattern matching (CPM’03) (pp. 144–155).
Halldórsson, B., Bafna, V., Edwards, N., Lippert, R., Yooseph, S., & Istrail, S. (2004). A survey of computational methods for determining haplotypes. In LNCS: Vol. 2983, DIMACS/RECOMB satellite workshop on computational methods for SNPs and haplotype inference (pp. 26–47).
Halperin, E., & Eskin, E. (2004). Haplotype reconstruction from genotype data using imperfect phylogeny. Bioinformatics, 20(12), 1842–1849.
Halperin, E., & Karp, R. (2004). Perfect phylogeny and haplotype assignment. In Annual international conference on computational molecular biology (RECOMB’03) (pp. 10–19).
Huang, Y., Chao, K., & Chen, T. (2005). An approximation algorithm for haplotype inference by maximum parsimony. Journal of Computational Biology, 12(10), 1261–1274.
Hudson, R. (1990). Gene genealogies and the coalescent process. Oxford Survey of Evolutionary Biology, 7, 1–44.
Hudson, R. (2002). Generating samples under a Wright-Fisher neutral model of genetic variation. Bioinformatics, 18(2), 337–338.
Johnson, G., Esposito, L., Barratt, B., Smith, A., Heward, J., Genova, G., Ueda, H., Cordell, H., Eaves, I., Dudbridge, F., Twells, R., Payne, F., Hughes, W., Nutland, S., Stevens, H., Carr, P., Tuomilehto-Wolf, E., Tuomilehto, J., Gough, S., Clayton, D., & Todd, J. (2001). Haplotype tagging for the identification of common disease genes. Nature, 29, 233–237.
Kelly, E., Sievers, F., & McManus, R. (2004). Haplotype frequency estimation error analysis in the presence of missing genotype data. BMC Bioinformatics, 5, 188.
Kerem, B., Rommens, J., Buchanan, J., Markiewicz, D., Cox, T., Chakravarti, A., Buchwald, M., & Tsui, L. C. (1989). Identification of the cystic fibrosis gene: Genetic analysis. Science, 245, 1073–1080.
Kroetz, D. L., Pauli-Magnus, C., Hodges, L. M., Huang, C. C., Kawamoto, M., Johns, S. J., Stryke, D., Ferrin, T. E., DeYoung, J., Taylor, T., Carlson, E. J., Herskowitz, I., Giacomini, K. M., & Clark, A. G. (2003). Sequence diversity and haplotype structure in the human ABCD1 (MDR1, multidrug resistance transporter). Pharmacogenetics, 13, 481–494.
Lancia, G., Pinotti, C. M., & Rizzi, R. (2004). Haplotyping populations by pure parsimony: complexity of exact and approximation algorithms. INFORMS Journal on Computing, 16(4), 348–359.
Lynce, I., & Marques-Silva, J. (2006a). Efficient haplotype inference with Boolean satisfiability. In National conference on artificial intelligence (AAAI’06) (pp. 104–109).
Lynce, I., & Marques-Silva, J. (2006b). SAT in bioinformatics: making the case with haplotype inference. In LNCS: Vol. 4121, International conference on theory and applications of satisfiability testing (SAT’06) (pp. 136–141).
Lynce, I., & Marques-Silva, J. (2008). Haplotype inference with Boolean satisfiability. International Journal on Artificial Intelligence Tools, 17(2), 355–387.
Lynce, I., Marques-Silva, J., & Prestwich, S. (2008). Boosting haplotype inference with local search. Constraints, 13(1), 155–179.
Manquinho, V., & Marques-Silva, J. (2005). Effective lower bounding techniques for pseudo-Boolean optimization. In Design, automation and test in Europe conference and exhibition (DATE’05) (pp. 660–665).
Manquinho, V., Marques-Silva, J., & Planes, J. (2009). Algorithms for weighted Boolean optimization. In LNCS: Vol. 5584, International conference on theory and applications of satisfiability testing (SAT’09) (pp. 495–508).
Marchini, J., Cutler, D., Patterson, N., Stephens, M., Eskin, E., Halperin, E., Lin, S., Qin, Z., Munro, H., Abecassis, G., Donnelly, P., & Consortium, I. H. (2006). A comparison of phasing algorithms for trios and unrelated individuals. American Journal of Human Genetics, 78, 437–450.
Neigenfind, J., Gyetvai, G., Basekow, R., Diehl, S., Achenbach, U., Gebhardt, C., Selbig, J., & Kersten, B. (2008). Haplotype inference from unphased SNP data in heterozygous polyploids based on SAT. BMC Genomics, 9, 356.
Patil, N., Berno, A., Hinds, D., Barrett, W., Doshi, J., Hacker, C., Kautzer, C., Lee, D., Marjoribanks, C., McDonough, D., Nguyen, B., Norris, M., Sheehan, J., Shen, N., Stern, D., Stokowski, R., Thomas, D., Trulson, M., Vyas, K., Frazer, K., Fodor, S., & Cox, D. (2001). Blocks of limited haplotype diversity revealed by high-resolution scanning of human chromosome 21. Science, 294, 1719–1723.
Rieder, M. J., Taylor, S. T., Clark, A. G., & Nickerson, D. A. (2001). Sequence variation in the human angiotensin converting enzyme. Nature Genetics, 22, 481–494.
Schaffner, S., Foo, C., Gabriel, S., Reich, D., Daly, M., & Altshuler, D. (2005). Calibrating a coalescent simulation of human genome sequence variation. Genome Research, 15, 1576–1583.
Scheet, P., & Stephens, M. (2006). A fast and flexible statistical model for large-scale population genotype data: applications to inferring missing genotypes and haplotypic phase. American Journal of Human Genetics, 78, 629–644.
Sheini, H. M., & Sakallah, K. A. (2006). Pueblo: A hybrid pseudo-Boolean SAT solver. Journal on Satisfiability, Boolean Modeling and Computation, 2, 165–189.
Stephens, M., Smith, N., & Donelly, P. (2001). A new statistical method for haplotype reconstruction. American Journal of Human Genetics, 68, 978–989.
The International HapMap Consortium (2003). The international hapmap project. Nature, 426, 789–796.
The International HapMap Consortium (2005). A haplotype map of the human genome. Nature, 437, 1299–1320.
The International HapMap Consortium (2007). A second generation human haplotype map over 3.1 million SNPs. Nature, 449, 851–861.
Wang, L., & Xu, Y. (2003). Haplotype inference by maximum parsimony. Bioinformatics, 19(14), 1773–1780.
Wang, R. S., Zhang, X. S., & Sheng, L. (2005). Haplotype inference by pure parsimony via genetic algorithm. In LNOR: Vol. 5, Operations research and its applications: the fifth international symposium (ISORA’05) (pp. 296–306).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Graça, A., Marques-Silva, J., Lynce, I. et al. Haplotype inference with pseudo-Boolean optimization. Ann Oper Res 184, 137–162 (2011). https://doi.org/10.1007/s10479-009-0675-4
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10479-009-0675-4