Skip to main content
Log in

Network deployment of radiation detectors with physics-based detection probability calculations

  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

We describe a model for deploying radiation detectors on a transportation network consisting of two adversaries: a nuclear-material smuggler and an interdictor. The interdictor first installs the detectors. These installations are transparent to the smuggler, and are made under an uncertain threat scenario, which specifies the smuggler’s origin and destination, the nature of the material being smuggled, the manner in which it is shielded, and the mechanism by which the smuggler selects a route. The interdictor’s goal is to minimize the probability the smuggler evades detection. The performance of the detection equipment depends on the material being sensed, geometric attenuation, shielding, cargo and container type, background, time allotted for sensing and a number of other factors. Using a stochastic radiation transport code (MCNPX), we estimate detection probabilities for a specific set of such parameters, and inform the interdiction model with these estimates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Atkinson, M. P., & Wein, L. M. (2008). Spatial queueing analysis of an interdiction system to protect cities from a nuclear terrorist attack. Operations Research, 56, 247–254.

    Article  Google Scholar 

  • Bailey, M. D., Shechter, S. M., & Schaefer, A. J. (2006). SPAR: stochastic programming with adversarial recourse. Operations Research Letters, 34, 307–315.

    Article  Google Scholar 

  • Bard, J. F. (1998). Practical bilevel optimization: algorithms and applications. Boston: Kluwer Academic.

    Google Scholar 

  • Behrens, D. A., Caulkins, J. P., Feichtinger, G., & Tragler, G. (2007). Incentive Stackelberg strategies for a dynamic game on terrorism. In S. Jørgensen, M. Quincampoix, & T. L. Vincent (Eds.), Advances in dynamic game theory (pp. 459–486). Boston: Birkhäuser.

    Chapter  Google Scholar 

  • Ben-Ayed, O. (1993). Bi-level linear programming. Computers and Operations Research, 20, 485–501.

    Article  Google Scholar 

  • Boros, E., Fedzhora, L., Kantor, P. B., Saeger, K. J., & Stroud, P. (2009). Large scale linear programming model for finding optimal container inspection strategies. Naval Research Logistics, 56, 404–420.

    Article  Google Scholar 

  • Brown, G. G., Carlyle, W. M., Harney, R., Skroch, E., & Wood, R. K. (2006). Anatomy of a project to produce a first nuclear weapon. Science and Global Security, 14, 163–182.

    Article  Google Scholar 

  • Brown, G. G., Carlyle, W. M., Harney, R., Skroch, E., & Wood, R. K. (2009). Interdicting a nuclear-weapons project. Operations Research, 57, 866–877.

    Article  Google Scholar 

  • Cormican, K., Morton, D. P., & Wood, R. K. (1998). Stochastic network interdiction. Operations Research, 46, 184–197.

    Article  Google Scholar 

  • Geelhood, B. Evaluation of the use of energy thresholds to enhance detection sensitivity using data from Detroit’s Fort Street cargo facility (Technical Report PNNL-14282 TM-054). Pacific Northwest National Laboratory, Richland, Washington, 2003.

  • Gronberg, J., Hiller, L., Gosnell, T., & Wright, D. (2007). Calculating gamma-ray signatures from aged mixtures of heavy nuclides. In IEEE nuclear science symposium conference record, NSS ’07 (Vol. 2, pp. 1138–1142), Honolulu, HI, 2007.

  • Hemmecke, R., Schultz, R., & Woodruff, D. L. (2003). Interdicting stochastic networks with binary interdiction effort. In D. L. Woodruff (Ed.), Network interdiction and stochastic integer programming Boston: Kluwer Academic.

    Google Scholar 

  • ILOG CPLEX 9.0 user’s manual, 2008.

  • Ishizuka, Y., Shimizu, K., & Bard, J. F. (1997). Nondifferentiable and two-level programming. Boston: Kluwer Academic.

    Google Scholar 

  • Lo Presti, C., Weier, D., Kouzes, R., & Schweppe, J. (2006). Baseline suppression of vehicle portal monitor gamma count profiles: a characterization study. Nuclear Instruments and Methods in Physics Research A, 562, 281–297.

    Article  Google Scholar 

  • McLay, L. A., Lloyd, J. D., & Niman, E. (2008). Interdicting nuclear material on cargo containers using knapsack problem and Bayesian probability models (Technical report). Department of Statistical Sciences & Operations Research, Virginia Commonwealth University.

  • MCNPX user’s manual v2.6.0 (Los Alamos National Laboratory Report LA-CP-07-1473), April 2008.

  • Morton, D. P., Pan, F., & Saeger, K. J. (2007). Models for nuclear smuggling interdiction. IIE Transactions on Operations Engineering, 38, 3–14.

    Google Scholar 

  • Pan, F., & Morton, D. P. (2008). Minimizing a stochastic maximum-reliability path. Networks, 52, 111–119.

    Article  Google Scholar 

  • Pan, F., Charlton, W., & Morton, D. P. (2003). Interdicting smuggled nuclear material. In D. L. Woodruff (Ed.), Network interdiction and stochastic integer programming (pp. 1–20). Boston: Kluwer Academic.

    Chapter  Google Scholar 

  • Robinson, S. M., Siciliano, E. R., & Schweppe, J. E. (2008). Source injection distribution functions for alarm algorithm testing. Journal of Radioanalytical and Nuclear Chemistry, 276, 447–453.

    Article  Google Scholar 

  • Thoreson, G. G. (2009). A framework for efficient detection probability computation in smuggled nuclear material interdiction. Nuclear and Radiation Engineering, The University of Texas at Austin, M.S. Thesis.

  • Thoreson, G. G., & Schneider, E. A. (2009). Efficient calculation of detection probabilities. Nuclear Instruments and Methods in Physics Research A, under revision.

  • Wein, L. M., Wilkins, A. H., Baveja, M., & Flynn, S. E. (2006). Preventing the importation of illicit nuclear materials in shipping containers. Risk Analysis, 26, 1377–1393.

    Article  Google Scholar 

  • Witt, K. M. (2003). Development of a probabilistic network model to simulate the smuggling of nuclear materials. Nuclear and Radiation Engineering, The University of Texas at Austin, M.S. Thesis.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David P. Morton.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dimitrov, N.B., Michalopoulos, D.P., Morton, D.P. et al. Network deployment of radiation detectors with physics-based detection probability calculations. Ann Oper Res 187, 207–228 (2011). https://doi.org/10.1007/s10479-009-0677-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-009-0677-2

Keywords

Navigation