Skip to main content
Log in

Analysing DNA microarray data using Boolean techniques

  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

We address in this manuscript a problem arising in molecular biology, namely a problem of discovering dependencies among gene expression levels. The problem is formulated in mathematical terms as a search for a fully defined three valued function defined on three valued variables which is partially specified by the DNA microarray measurements. This formulation as well as our solution methods are strongly motivated by results in the area of logical analysis of data (LAD) and in the area of partially defined Boolean functions (pdBfs), in particular by procedures for finding fully defined extensions of pdBfs. On one hand we present several algorithms which (under some assumptions) construct the desired three valued functional extension of the input data, and on the other hand we derive several proofs showing that (under different assumptions) finding such an extension is NP-hard.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akutsu, T., Miyano, S., & Kuhara, S. (1999). Identification of genetic networks from a small number of gene expression patterns under the Boolean network model. In Pac. symp. biocomput. (pp. 17–28).

  • Akutsu, T., Miyano, S., & Kuhara, S. (2000a). Algorithms for identifying Boolean networks and related biological networks based on matrix multiplication and fingerprint function. In RECOMB ’00: Proceedings of the fourth annual international conference on computational molecular biology (pp. 8–14). New York: ACM. doi:10.1145/332306.332317.

    Chapter  Google Scholar 

  • Akutsu, T., Miyano, S., & Kuhara, S. (2000b). Inferring qualitative relations in genetic networks and metabolic pathways. Bioinformatics, 16(8), 727–734.

    Article  Google Scholar 

  • Akutsu, T., Kuhara, S., Maruyama, O., & Miyano, S. (2003). Identification of genetic networks by strategic gene disruptions and gene over expressions under a Boolean model. Theoretical Computer Science, 298(1), 235–251. doi:10.1016/S0304-3975(02)00425-5.

    Article  Google Scholar 

  • Alexe, G., Alexe, S., Bonates, T. O., & Kogan, A. (2007). Logical analysis of data—the vision of Peter L. Hammer. Annals of Mathematics and Artificial Intelligence, 49(1–4), 265–312. doi:10.1007/s10472-007-9065-2.

    Article  Google Scholar 

  • Boros, E., Ibaraki, T., & Makino, K. (1996). Extensions of partially defined Boolean functions with missing data (Tech. Rep. 6-96, RUTCOR Research Report RRR). Rutgers University, New Brunswick, NJ.

  • Boros, E., Ibaraki, T., & Makino, K. (1998). Error-free and best-fit extensions of partially defined Boolean functions. Information and Computation, 140, 254–283.

    Article  Google Scholar 

  • Boros, E., Ibaraki, T., & Makino, K. (1999). Fully consistent extensions of partially defined Boolean functions with missing bits (Tech. Rep. 99-30, RUTCOR Research Report RRR).

  • Bussemaker, H., Li, H., & Siggia, E. (2001). Regulatory element detection using correlation with expression. Nature Genetics, 2(27), 167–171.

    Article  Google Scholar 

  • Chen, T., Filkov, V., & Skiena, S. S. (1999). Identifying gene regulatory networks from experimental data. In RECOMB ’99: Proceedings of the third annual international conference on computational molecular biology (pp. 94–103). New York: ACM. doi:10.1145/299432.299462.

    Chapter  Google Scholar 

  • Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2001). Introduction to algorithms (2nd ed.). Cambridge: The MIT Press.

    Google Scholar 

  • Crama, Y., Hammer, P. L., & Ibaraki, T. (1988). Cause-effect relationships and partially defined Boolean functions. Annals of Operation Research, 16(1–4), 299–325.

    Article  Google Scholar 

  • DeRisi, J., Lyer, V., & Brown, P. (1997). Exploring the metabolic and genetic control of gene expression on a genomic scale. Science, 278.

  • D’Haeseleer, P., Wen, X., Fuhrman, S., & Somogyi, R. (1999). Linear modeling of mRNA expression levels during CNS development and injury. In Pac. symp. biocomput. (pp. 41–52).

  • Friedman, N., Linial, M., Nachman, I., & Pe’er, D. (2000). Using Bayesian networks to analyze expression data. Journal of Computational Biology, 7(3–4), 601–620.

    Article  Google Scholar 

  • Garey, M., & Johnson, D. (1979). Computers and intractability: a guide to the theory of NP-completeness. San Francisco: Freeman.

    Google Scholar 

  • Imade, H., Morishita, R., Ono, I., & Okamoto, M. (2003). A grid-oriented genetic algorithm for estimating genetic networks by s-systems. In Proc. SICE annual conference (Vol. 3, pp. 2750–2755).

  • Kauffman, S. A. (1993). The origins of order: self-organization and selection in evolution. London: Oxford University Press.

    Google Scholar 

  • Liang, S., Fuhrman, S., & Somogyi, R. (1998). REVEAL, a general reverse engineering algorithm for inference of genetic network architectures. In Pacific symposium on biocomputing (Vol. 3, pp. 18–29).

  • Murphy, K., & Mian, S. (1999). Modelling gene expression data using dynamic Bayesian networks. (Tech. rep.). University of California, Berkeley. http://citeseer.ist.psu.edu/murphy99modelling.html.

  • Schena, M., Shalon, D., Davis, R. W., & Brown, P. (1995). Quantitative monitoring of gene expression pattern with a complementing DNA microarray. Science, 270, 467–470.

    Article  Google Scholar 

  • Shmulevich, I., Dougherty, E. R., Kim, S., & Zhang, W. (2002). Probabilistic Boolean networks: a rule-based uncertainty model for gene regulatory networks. Bioinformatics, 18(2), 261–274.

    Article  Google Scholar 

  • Toh, H., & Horimoto, K. (2002). Inference of a genetic network by a combined approach of cluster analysis and graphical Gaussian modeling. Bioinformatics, 18(2), 287–297.

    Article  Google Scholar 

  • van Someren, E. P., Wessels, L. F. A., & Reinders, M. J. T. (2000). Linear modeling of genetic networks from experimental data. In Proceedings of the eighth international conference on intelligent systems for molecular biology (pp. 355–366). Menlo Park: AAAI Press.

    Google Scholar 

  • Weaver, D. C., Workman, C. T., & Stromo, G. D. (1999). Modeling regulatory networks with weight matrices. In Pacific symposium on biocomputing. citeseer.ist.psu.edu/weaver99modeling.html.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Kronus.

Additional information

The research was supported by Czech Science Foundation (GACR) under the contracts no. 201/07/0205 (first author), no. 201/05/H014 (second author) and no. 201/07/P168 (third author).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Čepek, O., Kronus, D. & Kučera, P. Analysing DNA microarray data using Boolean techniques. Ann Oper Res 188, 77–110 (2011). https://doi.org/10.1007/s10479-010-0723-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-010-0723-0

Keywords

Navigation