Skip to main content
Log in

Kusuoka representation of higher order dual risk measures

  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

We derive representations of higher order dual measures of risk in spaces as suprema of integrals of Average Values at Risk with respect to probability measures on (0,1] (Kusuoka representations). The suprema are taken over convex sets of probability measures. The sets are described by constraints on the dual norms of certain transformations of distribution functions. For p=2, we obtain a special description of the set and we relate the measures of risk to the Fano factor in statistics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Acerbi, C., & Tasche, D. (2002). On the coherence of expected shortfall. Journal of Banking and Finance, 26, 1487–1503.

    Article  Google Scholar 

  • Arnold, B. C. (1980). Lecture notes in statistics: Vol. 43. Majorization and the Lorenz order: a brief introduction. Berlin: Springer.

    Google Scholar 

  • Artzner, P., Delbaen, F., Eber, J.-M., & Heath, D. (1999). Coherent measures of risk. Mathematical Finance, 9, 203–228.

    Article  Google Scholar 

  • Cheridito, P., & Li, T. H. (2009). Risk measures on Orlicz hearts. Mathematical Finance, 19, 189–214.

    Article  Google Scholar 

  • Choi, S., Ruszczyński, A., & Zhao, Y. (2010, accepted for publication). A multi-product risk-averse newsvendor with law-invariant coherent measures of risk. Operations Research.

  • Cox, D. R., & Lewis, P. A. W. (1966). The statistical analysis of series of events. London: Methuen.

    Google Scholar 

  • Dentcheva, D., & Penev, S. (2010). Shape-restricted inference for Lorenz curves using duality theory. Statistics & Probability Letters, 80, 403–412.

    Article  Google Scholar 

  • Fano, U. (1947). Ionization field of radiations. II The fluctuations of the number of ions. Physical Review, 72, 26–29.

    Article  Google Scholar 

  • Fischer, T. (2001). Examples of coherent risk measures depending on one-sided moments. Working Paper TU Darmstadt.

  • Gastwirth, J. L. (1972). The estimation of the Lorenz curve and Gini index. The Review of Economics and Statistics, 54, 306–316.

    Article  Google Scholar 

  • Kijima, M., & Ohnishi, M. (1993). Mean-risk analysis of risk aversion and wealth effects on optimal portfolios with multiple investment possibilities. Annals of Operations Research, 45, 147–163.

    Article  Google Scholar 

  • Krokhmal, P. (2007). Higher moment coherent risk measures. Quantitative Finance, 7, 373–387.

    Article  Google Scholar 

  • Kusuoka, S. (2001). On law invariant coherent risk measures. Advances in Mathematical Economics, 3, 83–95.

    Google Scholar 

  • Leitner, J. (2005). A short note on second order stochastic dominance preserving coherent risk measures. Mathematical Finance, 15, 649–651.

    Article  Google Scholar 

  • Lorenz, M. (1905). Methods of measuring concentration of wealth. Journal of the American Statistical Association, 9, 209–219.

    Article  Google Scholar 

  • Markowitz, H. M. (1952). Portfolio selection. Journal of Finance, 7, 77–91.

    Article  Google Scholar 

  • Markowitz, H. M. (1987). Mean-variance analysis in portfolio choice and capital markets. Oxford: Blackwell.

    Google Scholar 

  • Ogryczak, W., & Ruszczyński, A. (1999). From stochastic dominance to mean-risk models: semideviations and risk measures. European Journal of Operations Research, 116, 33–50.

    Article  Google Scholar 

  • Ogryczak, W., & Ruszczyński, A. (2001). On consistency of stochastic dominance and mean–semideviation models. Mathematical Programming, 89, 217–232.

    Article  Google Scholar 

  • Ogryczak, W., & Ruszczyński, A. (2002). Dual stochastic dominance and related mean-risk models. SIAM Journal on Optimization, 13(1), 60–78.

    Article  Google Scholar 

  • Rockafellar, R. T. (1974). CBMS-NSF regional conference series in applied mathematics: Vol. 16. Conjugate duality and optimization. Philadelphia: SIAM.

    Google Scholar 

  • Rockafellar, R. T., & Uryasev, S. (2002). Conditional value-at-risk for general loss distributions. Journal of Banking and Finance, 26, 1443–1471.

    Article  Google Scholar 

  • Rockafellar, R. T., Uryasev, S., & Zabarankin, M. (2006). Generalized deviations in risk analysis. Finance and Stochastics, 10, 51–74.

    Article  Google Scholar 

  • Ruszczyński, A., & Shapiro, A. (2006). Optimization of convex risk functions. Mathematics of Operations Research, 31, 433–452.

    Article  Google Scholar 

  • Shapiro, A., Dentcheva, D., & Ruszczyński, A. (2009). Lectures on stochastic programming: modeling and theory. Philadelphia: SIAM.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Darinka Dentcheva.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dentcheva, D., Penev, S. & Ruszczyński, A. Kusuoka representation of higher order dual risk measures. Ann Oper Res 181, 325–335 (2010). https://doi.org/10.1007/s10479-010-0747-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-010-0747-5

Keywords

Navigation