Skip to main content

Advertisement

Log in

A unified framework for population-based metaheuristics

  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

Based on the analysis of the basic schemes of a variety of population-based metaheuristics (PBMH), the main components of PBMH are described with functional relationships in this paper and a unified framework (UF) is proposed for PBMH to provide a comprehensive way of viewing PBMH and to help understand the essential philosophy of PBMH from a systematic standpoint. The relevance of the proposed UF and some typical PBMH methods is illustrated, including particle swarm optimization, differential evolution, scatter search, ant colony optimization, genetic algorithm, evolutionary programming, and evolution strategies, which can be viewed as the instances of the UF. In addition, as a platform to develop the new population-based metaheuristics, the UF is further explained to provide some designing issues for effective/efficient PBMH algorithms. Subsequently, the UF is extended, namely UFmeme to describe the Memetic Algorithms (MAs) by adding local search (memetic component) to the framework as an extra-feature. Finally, we theoretically analyze the asymptotic convergence properties of PBMH described by the UF and MAs by the UFmeme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bäck, T. (1996). Evolutionary algorithms in theory and practice. London: Oxford University Press.

    Google Scholar 

  • Beyer, H.-G., & Schwefel, H.-P. (2002). Evolution strategies: a comprehensive introduction. Natural Computing, 1, 3–52.

    Article  Google Scholar 

  • Bonabeau, E., Dorigo, M., & Theraulaz, G. (1999). Swarm intelligence: from natural to artificial systems. London: Oxford University Press.

    Google Scholar 

  • Bonissone, P. P., Subbu, R., Eklund, N., & Kiehl, T. R. (2006). Evolutionary algorithms + domain knowledge = real-world evolutionary computation. IEEE Transactions on Evolutionary Computation, 10, 256–280.

    Article  Google Scholar 

  • Calégari, P., Coray, G., Hertz, A., Kobler, D., & Kuonen, P. (1999). A taxonomy of evolutionary algorithms in combinatorial optimization. Journal of Heuristics, 5, 145–158.

    Article  Google Scholar 

  • Cao, Y. J., & Wu, Q. H. (1997). Convergence analysis of adaptive genetic algorithm. In Genetic algorithms in engineering systems conf.: innovations and applications, 1997 (pp. 85–89).

    Google Scholar 

  • Chellapilla, K. (1998). Combining mutation operators in evolutionary programming. IEEE Transactions on Evolutionary Computation, 2, 91–96.

    Article  Google Scholar 

  • Clerc, M., & Kennedy, J. (2002). The particle swarm: explosion stability and convergence in a multi-dimensional complex space. IEEE Transactions on Evolutionary Computation, 6, 58–73.

    Article  Google Scholar 

  • Coello Coello, C. A. (2002). Theoretical and numerical constraint-handling techniques used with evolutionary algorithms: a survey of the state of the art. Computer Methods in Applied Mechanics and Engineering, 191, 1245–1287.

    Article  Google Scholar 

  • Coello Coello, C. A. (2006). Evolutionary multi-objective optimization: a historical view of the field. IEEE Computational Intelligence Magazine, 1, 28–36.

    Article  Google Scholar 

  • Dasgupta, D. (1998). Artificial immune systems and their applications. Berlin: Springer.

    Google Scholar 

  • Davis, T. E. (1991). Toward an extrapolation of the simulated annealing convergence theory onto the simple genetic algorithm. Ph.D. dissertation, Univ. Florida, Gainesville.

  • De Jong, K. A. (2006). Evolutionary computation: a unified approach. Cambridge: MIT Press.

    Google Scholar 

  • Dimopoulos, C., & Zalzala, A. M. S. (2000). Recent development in evolutionary computation for manufacturing optimization: problems, solutions, and comparisons. IEEE Transactions on Evolutionary Computation, 4, 93–113.

    Article  Google Scholar 

  • Dorigo, M., & Gambardella, L. M. (2002). Special section on ant colony optimization. IEEE Transactions on Evolutionary Computation, 6, 317–319.

    Article  Google Scholar 

  • Eberbach, E. (2005). Toward a theory of evolutionary computation. Biosystems, 82, 1–19.

    Article  Google Scholar 

  • Eiben, A., & Smith, J. E. (2003). Introduction to evolutionary computing. Heidelberg: Springer.

    Google Scholar 

  • Eiben, A. E., Aarts, E. H. L., & van Hee, K. M. (1991). Global convergence of genetic algorithms: a Markov chain analysis. In Proc. 1st int. conf. parallel problem solving from nature, 1991 (pp. 4–12).

    Google Scholar 

  • Eiben, A., Aarts, E., van Hee, K., & Nuijten, W. (1995). A unifying approach on heuristic search. Annals of Operation Research, 55, 81–99.

    Article  Google Scholar 

  • Fogel, D. B. (1992). Evolving artificial intelligence. Ph.D. dissertation, San Diego: Univ. of California.

  • Fogel, L. J., Owens, A. J., & Walsh, M. J. (1966). Artificial intelligence through simulated evolution. Chichester: Wiley.

    Google Scholar 

  • Fonseca, C. M., & Fleming, P. J. (1995). An overview of evolutionary algorithms in multiobjective optimization. Evolutionary Computation, 3, 1–16.

    Article  Google Scholar 

  • François, O. (1998). An evolutionary strategy for global minimization and its Markov chain analysis. IEEE Transactions on Evolutionary Computation, 2, 77–90.

    Article  Google Scholar 

  • Ghamlouche, I., Crainic, T. G., & Gendreau, M. (2002). Path relinking, cycle-based neighbourhoods and capacitated multicommodity network design. Publication CRT-2002-01, Centre de recherche sur les transports, Université de Montréal.

  • Glover, F. (1977). Heuristics for integer programming using surrogate constraints. Decision Sciences, 8, 156–166.

    Article  Google Scholar 

  • Glover, F. (1998). A template for scatter search and path relinking. In Lecture notes in computer science: Vol. 1363 (pp. 13–54). Berlin: Springer.

    Google Scholar 

  • Glover, F., & Kochenberger, G. (2003). Handbook of metaheuristics. Boston: Kluwer Academic.

    Google Scholar 

  • Glover, F., Laguna, M., & Martí, R. (2003). Scatter search and path relinking: advances and applications. In Handbook of metaheuristics (pp. 1–35).

    Google Scholar 

  • Grabowski, J., & Pempera, J. (2001). New block properties for the permutation flow shop problem with application in tabu search. The Journal of the Operational Research Society, 52, 210–220.

    Article  Google Scholar 

  • Grabowski, J., & Pempera, J. (2007). The permutation flow shop problem with blocking: a tabu search approach. Omega, 35, 302–311.

    Article  Google Scholar 

  • Gravel, M., Price, W. L., & Gagne, C. (2002). Scheduling continuous casting of aluminum using a multiple objective ant colony optimization metaheuristic. European Journal of Operational Research, 143, 218–229.

    Article  Google Scholar 

  • Häggström, O. (2002). Finite Markov chains and algorithmic applications. New York: Cambridge University Press.

    Book  Google Scholar 

  • Hansen, P., & Mladenovic, N. (2001). Variable neighborhood search: principles and applications. European Journal of Operational Research, 130, 449–467.

    Article  Google Scholar 

  • Hart, E., Ross, P., & Corne, D. (2005). Evolutionary scheduling: a review. Genetic Programming and Evolvable Machines, 6, 191–220.

    Article  Google Scholar 

  • Hart, W. E., Krasnogor, N., & Smith, J. E. (2004). Recent advances in memetic algorithms. Heidelberg: Springer.

    Google Scholar 

  • He, J., & Kang, L. (1999). On the convergence rates of genetic algorithms. Theoretical Computer Science, 229, 23–39.

    Article  Google Scholar 

  • Hertz, A., & Kobler, D. (2000). A framework for the description of evolutionary algorithms. European Journal of Operational Research, 126, 1–12.

    Article  Google Scholar 

  • Holland, J. H. (1975). Adaptation in natural and artificial systems. Ann Arbor: University of Michigan Press.

    Google Scholar 

  • Hoogeveen, H. (2005). Multicriteria scheduling. European Journal of Operational Research, 167, 592–623.

    Article  Google Scholar 

  • Ingo Rechenberg (1994). Evolutionsstrategie ’94. Stuttgart: Frommann-Holzboog.

    Google Scholar 

  • Ishibuchi, H., Misaki, S., & Tanaka, H. (1995). Modified simulated annealing algorithms for the flow shop sequencing problem. European Journal of Operational Research, 81, 388–398.

    Article  Google Scholar 

  • Ishibuchi, H., Yoshida, T., & Murata, T. (2003). Balance between genetic search and local search in memetic algorithms for multiobjective permutation flowshop scheduling. IEEE Transactions on Evolutionary Computation, 7, 204–223.

    Article  Google Scholar 

  • Jin, Y., & Branke, J. (2005). Evolutionary optimization in uncertain environments—a survey. IEEE Transactions on Evolutionary Computation, 9, 303–317.

    Article  Google Scholar 

  • Johnson, S. M. (1954). Optimal two- and three- stage production schedules with setup times included. Naval Research Logistics Quarterly, 1, 61–68.

    Article  Google Scholar 

  • Kennedy, J., Eberhart, R. C., & Shi, Y. (2001). Swarm intelligence. San Francisco: Morgan Kaufmann.

    Google Scholar 

  • Kochenberger, G. A., Glover, F., Alidaee, B., & Rego, C. (2004). A unified modeling and solution framework for combinatorial optimization problems. OR-Spektrum, 26, 237–250.

    Google Scholar 

  • Koza, J. R. (1992). Genetic programming. Cambridge: MIT Press.

    Google Scholar 

  • Krasnogor, N. (2002). Studies on the theory and design space of memetic algorithms. Ph.D. dissertation, Univ. West of England, Bristol, UK.

  • Krasnogor, N., & Smith, J. (2005). A tutorial for competent memetic algorithms: model, taxonomy, and design issues. IEEE Transactions on Evolutionary Computation, 9, 474–488.

    Article  Google Scholar 

  • Lageweg, B. J., Lenstra, J. K., & Rinnooy Kan, A. H. G. (1978). A general bounding scheme for the permutation flow-shop problem. Operations Research, 26, 53–67.

    Article  Google Scholar 

  • Laguna, M., & Martí, R. (2003). Scatter search: methodology and implementations in C. Boston: Kluwer Academic.

    Google Scholar 

  • Laguna, M., Martí, R., & Campos, V. (1999). Intensification and diversification with elite tabu search solutions for the linear ordering problem. Computers & Operations Research, 26, 1217–1230.

    Article  Google Scholar 

  • Li, B., & Jiang, W. (2000). A novel stochastic optimization algorithm. IEEE Transactions on Systems, Man, and Cybernetics, 30, 193–198.

    Article  Google Scholar 

  • Li, B. B., Wang, L., & Liu, B. (2008). An effective PSO-based hybrid algorithm for multiobjective permutation flow shop scheduling. IEEE Transactions on Systems, Man and Cybernetics Part A Systems and Humans, 38, 818–831.

    Article  Google Scholar 

  • Liu, B., Wang, L., Jin, Y. H., Tang, F., & Huang, D. X. (2005). Improved particle swarm optimization combined with chaos. Chaos, Solitons and Fractals, 25, 1261–1271.

    Article  Google Scholar 

  • Liu, B., Wang, L., & Jin, Y. H. (2007). An effective PSO-based memetic algorithm for flow shop scheduling. IEEE Transactions on Systems, Man and Cybernetics Part B Cybernetics, 37, 18–27.

    Article  Google Scholar 

  • Liu, B., Wang, L., & Jin, Y. H. (2008). An effective hybrid PSO-based algorithm for flow shop scheduling with limited buffers. Computers & Operations Research, 35, 2791–2806.

    Article  Google Scholar 

  • Liu, B., Wang, L., Liu, Y., Qian, B., & Jin, Y. H. (2010). An effective hybrid particle swarm optimization for batch scheduling of polypropylene processes. Computers & Chemical Engineering, 34, 518–528.

    Article  Google Scholar 

  • Liu, J., Zhong, W., & Jiao, L. (2006). A multiagent evolutionary algorithm for constraint satisfaction problems. IEEE Transactions on Systems, Man and Cybernetics Part B Cybernetics, 36, 54–73.

    Article  Google Scholar 

  • Martí, R. (2006). Scatter search—wellsprings and challenges. European Journal of Operational Research, 169, 351–358.

    Article  Google Scholar 

  • Martí, R., Laguna, M., & Glover, F. (2006). Principles of scatter search. European Journal of Operational Research, 169, 359–372.

    Article  Google Scholar 

  • Michalewicz, Z., & Schoenauer, M. (1996). Evolutionary algorithms for constrained parameter optimization problems. Evolutionary Computation, 4, 1–32.

    Article  Google Scholar 

  • Moscato, P. (1989). On evolution, search, optimization, genetic algorithms and martial arts: toward memetic algorithms (Tech. Rep.). Caltech Concurrent Computation Program, Rep. 826, California Inst. Technol., Pasadena, CA.

  • Nawaz, M., Enscore, E., & Ham, I. (1983). A heuristic algorithm for the m-machine, n-job flow-shop sequencing problem. Omega, 11, 91–95.

    Article  Google Scholar 

  • Nearchou, A. C., & Omirou, S. L. (2006). Differential evolution for sequencing and scheduling optimization. Journal of Heuristics, 12, 395–411.

    Article  Google Scholar 

  • Nix, A., & Vose, M. D. (1992). Modeling genetic algorithm with Markov chains. Annals of Mathematics and Artificial Intelligence, 5, 27–34.

    Article  Google Scholar 

  • Nowicki, E. (1999). The permutation flow shop with buffers: a tabu search approach. European Journal of Operational Research, 116, 205–219.

    Article  Google Scholar 

  • Nowicki, E., & Smutnicki, C. (1996). A fast tabu search algorithm for the permutation flow-shop problem. European Journal of Operational Research, 91, 160–175.

    Article  Google Scholar 

  • Nowicki, E., & Smutnicki, C. (2005). Some aspects of scatter search in the flow-shop problem. European Journal of Operational Research, 169, 654–666.

    Article  Google Scholar 

  • Ong, Y. S. (2002). Artificial intelligence technologies in complex engineering design. Ph.D. dissertation, Sch. Eng. Sci., Univ. Southampton, Southampton, UK.

  • Ong, Y. S., & Keane, A. J. (2004). Meta-Lamarckian learning in memetic algorithms. IEEE Transactions on Evolutionary Computation, 8, 99–110.

    Article  Google Scholar 

  • Ong, Y. S., Lim, M.-H., Zhu, N., & Wong, K.-W. (2006). Classification of adaptive memetic algorithms: a comparative study. IEEE Transactions on Systems, Man and Cybernetics Part B Cybernetics, 36, 141–152.

    Google Scholar 

  • Onwubolu, G., & Davendra, D. (2006). Scheduling flow shops using differential evolution algorithm. European Journal of Operational Research, 171, 674–692.

    Article  Google Scholar 

  • Price, K., Storn, R., & Lampinen, J. (2005). Differential evolution—a practical approach to global optimization. Berlin: Springer.

    Google Scholar 

  • Rajendran, C., & Ziegler, H. (2004). Ant-colony algorithms for permutation flowshop scheduling to minimize makespan/total flowtime of jobs. European Journal of Operational Research, 155, 426–438.

    Article  Google Scholar 

  • Reeves, C. R., & Yamada, T. (1998). Genetic algorithms, path relinking and the flowshop sequencing problem. Evolutionary Computation, 6, 45–60.

    Article  Google Scholar 

  • Reynolds, R. G. (1994). An introduction to cultural algorithms. In Proc. 3rd annual conference on evolutionary programming, San Diego, USA (pp. 131–139).

    Google Scholar 

  • Rosenthal, J. S. (1995). Convergence rates for Markov chains. SIAM Review, 37, 387–405.

    Article  Google Scholar 

  • Rudolph, G. (1994). Convergence analysis of canonical genetic algorithms. IEEE Transactions on Neural Networks, 5, 96–101.

    Article  Google Scholar 

  • Rudolph, G. (1996). Convergence of evolutionary algorithms in general search spaces. In Proc. IEEE int. conf. on evolutionary computation, Nagoya, Japan, 1996 (pp. 50–54).

    Chapter  Google Scholar 

  • Rudolph, G. (1997). Local convergence rates of simple evolutionary algorithms with Cauchy mutations. IEEE Transactions on Evolutionary Computation, 1, 249–258.

    Article  Google Scholar 

  • Rudolph, G. (1998). Finite Markov chains results in evolutionary computation: a Tour d’Horizon. Fundamenta Informaticae, 35, 67–89.

    Google Scholar 

  • Ruiz, R., & Maroto, C. (2005). A comprehensive review and evaluation of permutation flowshop heuristics. European Journal of Operational Research, 165, 479–494.

    Article  Google Scholar 

  • Schwefel, H.-P. (1995). Evolution and optimum seeking. New York: Wiley.

    Google Scholar 

  • Sha, D. Y., & Hsu, C. Y. (2006). A hybrid particle swarm optimization for job shop scheduling problem. Computers & Industrial Engineering, 51, 791–808.

    Article  Google Scholar 

  • Smith, J. (1998). Self adaptation in evolutionary algorithms. Ph.D. dissertation, Univ. West of England, England, U.K.

  • Smutnicki, C., & Tyński, A. (2006). Job-shop scheduling by GA. A new crossover operator. Operations Research Proceedings, 715–720.

  • Suzuki, J. (1995). A Markov chain analysis on simple genetic algorithms. IEEE Transactions on Systems, Man, and Cybernetics, 25, 655–659.

    Article  Google Scholar 

  • Suzuki, J. (1998). A further result on the Markov chain model of genetic algorithms and its application to a simulated annealing-like strategy. IEEE Transactions on Systems, Man and Cybernetics Part B Cybernetics, 28, 95–102.

    Article  Google Scholar 

  • Taillard, É. D., Gambardella, L. M., Gendreau, M., & Potvin, J.-Y. (2001). Adaptive memory programming: A unified view of metaheuristics. European Journal of Operational Research, 135, 1–16.

    Article  Google Scholar 

  • Talbi, E. (2002). A taxonomy of hybrid metaheuristics. Journal of Heuristics, 8, 541–564.

    Article  Google Scholar 

  • Tasgetiren, M. F., Liang, Y. C., Sevkli, M., & Gencyilmaz, G. (2007). A particle swarm optimization algorithm for makespan and total flowtime minimization in the permutation flowshop sequencing problem. European Journal of Operational Research, 177, 1930–1947.

    Article  Google Scholar 

  • T’kindt, V., Monmarche, N., Tercinet, F., & Laugt, D. (2002). An ant colony optimization algorithm to solve a 2-machine bicriteria flowshop scheduling problem. European Journal of Operational Research, 142, 250–257.

    Article  Google Scholar 

  • Trelea, I. C. (2003). The particle swarm optimization algorithm: convergence analysis and parameter selection. Information Processing Letters, 85, 317–325.

    Article  Google Scholar 

  • Wang, L. (2003). Shop scheduling with genetic algorithms. Beijing: Tsinghua Univ. Press & Springer.

    Google Scholar 

  • Wang, L., & Liu, B. (2008). Particle swarm optimization and scheduling algorithms. Beijing: Tsinghua University Press.

    Google Scholar 

  • Yao, X., Liu, Y., & Lin, G. (1999). Evolutionary programming made faster. IEEE Transactions on Evolutionary Computation, 3, 82–102.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, B., Wang, L., Liu, Y. et al. A unified framework for population-based metaheuristics. Ann Oper Res 186, 231–262 (2011). https://doi.org/10.1007/s10479-011-0894-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-011-0894-3

Keywords

Navigation