Skip to main content
Log in

Scatter search for the cutwidth minimization problem

  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

The cutwidth minimization problem consists of finding a linear layout of a graph so that the maximum linear cut of edges is minimized. This NP-hard problem has applications in network scheduling, automatic graph drawing and information retrieval. We propose a heuristic method based on the Scatter Search (SS) methodology for finding approximate solutions to this optimization problem. This metaheuristic explores solution space by evolving a set of reference points. Our SS method is based on a GRASP constructive algorithm, a local search strategy based on insertion moves and voting-based combination methods. We also introduce a new measure to control the diversity in the search process. Empirical results with 252 previously reported instances indicate that the proposed procedure compares favorably to previous metaheuristics for this problem, such as Simulated Annealing and Evolutionary Path Relinking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adolphson, D., & Hu, T. C. (1973). Optimal linear ordering. SIAM Journal on Applied Mathematics, 25(3), 403–423.

    Article  Google Scholar 

  • Andrade, D. V., & Resende, M. G. C. (2007a). GRASP with path-relinking for network migration scheduling. In Proceedings of international network optimization conference.

    Google Scholar 

  • Andrade, D. V., & Resende, M. G. C. (2007b). GRASP with evolutionary path-relinking. In Proceedings of seventh metaheuristics international conference (MIC).

    Google Scholar 

  • Botafogo, R. A. (1993). Cluster analysis for hypertext systems. In 16th annual international ACM-SIGIR conference on research and development in information retrieval (pp. 116–125).

    Google Scholar 

  • Cohoon, J., & Sahni, S. (1987). Heuristics for the board permutation problem. Journal of VLSI and Computer Systems, 2, 37–61.

    Google Scholar 

  • Feo, T. A., & Resende, M. G. C. (1989). A probabilistic heuristic for a computationally difficult set covering problem. Operations Research Letters, 8, 67–71.

    Article  Google Scholar 

  • Feo, T. A., & Resende, M. G. C. (1995). Greedy randomized adaptive search procedures. Journal of Global Optimization, 6, 109–133.

    Article  Google Scholar 

  • Gavril, F. (1977). Some NP-complete problems on graphs. In Proceedings of the 11th conference on information sciences and systems (pp. 91–95).

    Google Scholar 

  • Glover, F., & Laguna, M. (1997). Tabu search. Norwell: Kluwer Academic.

    Book  Google Scholar 

  • Karger, D. R. (1999). A randomized fully polynomial time approximation scheme for the all-terminal network reliability problem. SIAM Journal on Computing, 29(2), 492–514.

    Article  Google Scholar 

  • Laguna, M., & Martí, R. (2003). Scatter search: methodology and implementations in C. Boston: Kluwer Academic.

    Book  Google Scholar 

  • Makedon, F., & Sudborough, I. H. (1989). On minimizing width in linear layouts. Discrete Applied Mathematics, 23(3), 243–265.

    Article  Google Scholar 

  • Makedon, F., Papadimitriou, C., & Sudbourough, I. H. (1985). Topological bandwidth. SIAM Journal on Algebraic and Discrete Methods, 6(3), 418–444.

    Article  Google Scholar 

  • Martí, R., Campos, V., & Piñana, E. (2008). Branch and bound for the matrix bandwidth minimization. European Journal of Operational Research, 186, 513–528.

    Article  Google Scholar 

  • Piñana, E., Plana, I., Campos, V., & Martí, R. (2004). GRASP and path relinking for the matrix bandwidth minimization. European Journal of Operational Research, 153(1), 200–210.

    Article  Google Scholar 

  • Raspaud, A., Schröder, H., Sýkora, O., Török, L., & Vrt’o, I. (2009). Antibandwidth and cyclic antibandwidth of meshes and hypercubes. Discrete Mathematics, 309, 3541–3552.

    Article  Google Scholar 

  • Resende, M. G. C., & Andrade, D. V. (2009). Method and system for network migration scheduling. United States Patent Application Publication US2009/0168665.

  • Resende, M. G. C., & Ribeiro, C. C. (2003). Greedy randomized adaptive search procedures. In F. Glover & G. Kochenberger (Eds.), Handbook of metaheuristics (pp. 219–250). Norwell: Kluwer Academic.

    Google Scholar 

  • Resende, M. G. C., & Werneck, R. F. (2004). A hybrid heuristc for the p-median problem. Journal of Heuristics, 10, 59–88.

    Article  Google Scholar 

  • Resende, M. G. C., Martí, R., Gallego, M., & Duarte, A. (2010). GRASP and path relinking for the max-min diversity problem. Computers & Operations Research, 37, 498–508.

    Article  Google Scholar 

  • Rolim, J., Sýkora, O., & Vrt’o, I. (1995). Cutwidth of the de Bruijn graph. RAIRO. Informatique Théorique et Applications, 29(6), 509–514.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abraham Duarte.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pantrigo, J.J., Martí, R., Duarte, A. et al. Scatter search for the cutwidth minimization problem. Ann Oper Res 199, 285–304 (2012). https://doi.org/10.1007/s10479-011-0907-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-011-0907-2

Keywords

Navigation