Skip to main content
Log in

Modeling recreational systems using optimization techniques and information technologies

  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

Due to intrinsic complexity and sophistication of decision problems in tourism and recreation, respective decision making processes can not be implemented without making use of modern computer technologies and operations research approaches. In this paper, we review research works on modeling recreational systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  • Abbaspour, R. A., & Samadzadegan, F. (2009). Itinerary planning in multimodal urban transportation network. Journal of Applied Sciences, 10, 1898–1906.

    Article  Google Scholar 

  • Adomavicius, G., & Tuzhilin, A. (2005). Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions. IEEE Transactions on Knowledge and Data Engineering, 17(6), 734–749.

    Article  Google Scholar 

  • Allen, J. F. (1983). Maintaining knowledge about temporal intervals. Communications of the ACM, 26, 832–843.

    Article  Google Scholar 

  • Badinelli, R. D. (2000). An optimal, dynamic policy for hotel yield management. European Journal of Operational Research, 121(3), 476–503.

    Article  Google Scholar 

  • Baggio, R., & Caporarello, L. Decision support systems in a tourism destination: literature survey and model building. Paper presented at: itAIS 2005—2nd Conference of the Italian Chapter of AIS: Organising Information Systems: Evolution of Studies in the Field, Verona, 1–2 December 2005. http://www.iby.it/turismo/papers/baggio-dss-tourism.pdf.

  • Bartlett, M., Frisch, A. M., Hamadi, Y., Miguel, I., Tarim, S. A., & Unsworth, C. (2005). The Temporal Knapsack Problem and its solution. In Second international conference on the integration of AI and OR techniques in constraint programming for combinatorial optimization problems (CPAIOR) (pp. 34–48).

    Chapter  Google Scholar 

  • Benoist, T., Bourreau, E., Caseau, Y., & Rottembourg, B. (2001). Towards stochastic constraint programming: a study of online multi-choice knapsack with deadlines. In Proceedings of the seventh international conference on principles and practice of constraint programming (CP01) (pp. 61–76). London: Springer.

    Google Scholar 

  • Bent, R., & Van Hentenryck, P. (2004). Regrets only. Online stochastic optimization under time constraints. In Proceedings of the 19th national conference on artificial intelligence (AAAI04), San Jose, CA.

    Google Scholar 

  • Bitran, G. R., & Caldentey, R. (2003). An overview of pricing models for revenue management. Manufacturing & Service Operations Management, 5, 203–229.

    Article  Google Scholar 

  • Bitran, G. R., & Gilbert, S. M. (1996). Managing hotel reservations with uncertain arrivals. Operations Research, 44(1), 35–49. Special Issue on New Directions in Operations Management.

    Article  Google Scholar 

  • Bitran, G. R., & Mondschein, S. V. (1995). An application of yield management to the hotel industry considering multiple day stays. Operations Research, 43(3), 427–443.

    Article  Google Scholar 

  • Buhalis, D. (2000). Information technology in tourism: the state of the art. Tourism Recreation Research, 25(1), 41–58.

    Article  Google Scholar 

  • Buhalis, D. (2003). eTourism: information technology for strategic tourism management. Harlow: Prentice Hall.

    Google Scholar 

  • Buhalis, D., & Law, R. (2008). Progress in information technology and tourism management: 20 years on and 10 years after the Internet—the state of etourism research. Tourism Management, 29, 609–623.

    Article  Google Scholar 

  • Buyukozkan, G., & Ergun, B. (2011). Intelligent system applications in electronic tourism. Expert Systems With Applications, 38(6), 6586–6598.

    Article  Google Scholar 

  • Chao, I., Golden, B., & Wasil, E. (1996). Theory and methodology—a fast and effective heuristic for the orienteering problem. European Journal of Operational Research, 88, 475–489.

    Article  Google Scholar 

  • Chiang, W.-C., Chen, J. C. H., & Xu, X. (2007). An overview of research on revenue management: current issues and future research. International Journal of Revenue Management, 1, 97–128 (2007).

    Article  Google Scholar 

  • Coombs, C. H., & Smith, J. E. K. (1973). On the detection of structures in attitudes and developmental processes. Psychological Review, 80, 337–351.

    Article  Google Scholar 

  • Deitch, R., & Ladany, S. P. (1994). Determination of optimal one-period tourist bus tours with identical starting and terminal points. International Journal of Services Technology and Management, 2(1/2), 116–129. Special Issue on Yield Management, Moments of Yield—The Optimal Sale of Perishable Products, S.-E. Andersson (Ed.).

    Article  Google Scholar 

  • Deitch, R., & Ladany, S. P. (2000a). The one-period bus touring problem: solved by an effective heuristic for the orienteering tour problem and improvement algorithm. European Journal of Operational Research, 127(1), 69–77.

    Article  Google Scholar 

  • Deitch, R., & Ladany, S. P. (2000b). The bus touring problem: cluster-first, route-second heuristics. Tourism Economics, 6(3), 263–279.

    Article  Google Scholar 

  • Deogun, J. S., & Gopalakrishnan, K. (1999). Consecutive retrieval property revisited. Information Processing Letters, 69, 15–20.

    Article  Google Scholar 

  • Di Bitonto, P., Di Tria, F., Laterza, M., Roselli, T., Rossano, V., & Tangorra, F. (2010a). A model for generating tourist itineraries. In 10th international conference on intelligent systems design and applications, ISDA 2010, November 29–December 1, 2010, Cairo, Egypt (pp. 971–976). New York: IEEE Press.

    Chapter  Google Scholar 

  • Di Bitonto, P., Di Tria, F., Laterza, M., Roselli, T., Rossano, V., & Tangorra, F. (2010b). Automated generation of itineraries in recommender systems for tourism. In F. Daniel & F. M. Facca (Eds.), Proceedings of the 10th international conference on current trends in web engineering (ICWE’10) (pp. 498–508). Berlin, Heidelberg: Springer.

    Chapter  Google Scholar 

  • Dunstall, S., Horn, M., Kilby, P., Krishnamoorthy, M., Owens, B., Sier, D., & Thiebaux, S. (2004). An automated itinerary planning system for holiday travel. J. Journal of Information Technology & Tourism, 6, 1–33.

    Google Scholar 

  • Fixman, M. (1955). Excluded volume in polymer chains. Journal of Chemical Physics Online, 23, 1656.

    Article  Google Scholar 

  • Flammini, M., Gambosi, G., & Salomone, S. (1993). Boolean routing. In Lecture notes in comput. sci.: Vol. 725 (pp. 219–233). Berlin: Springer.

    Google Scholar 

  • Fulkerson, D. R., & Gross, O. A. (1965). Incidence matrices and interval graphs. Pacific Journal of Mathematics, 15, 835–855.

    Article  Google Scholar 

  • Gearing, C. E., Swart, W. W., & Var, T. (1973). Determining the optimal investment policy for the tourism sector of a developing country. Management Science, 20(4, Part I), 487–497.

    Article  Google Scholar 

  • Ghosh, S. P. (1972). File organization: the consecutive retrieval property. Communications of the ACM, 15, 802–808.

    Article  Google Scholar 

  • Godart, J.-M. (1999). Combinatorial optimisation based decision support system for trip planning. In D. Buhalis & W. Schertler (Eds.), Proceedings of international conference on information and communication technologies in tourism, Austria (pp. 318–327). Berlin: Springer.

    Google Scholar 

  • Godart, J.-M. (2000). Sightseeing tour planning based on combinatorial optimization: a tool for hotel marketing. International Journal of Hospitality Information Technology, 1(2), 21–33.

    Article  Google Scholar 

  • Godart, J.-M. (2001a). Using the trip planning problem for computer-assisted customization of sightseeing tours. In P. J. Sheldon, K. W. Wöber, & D. R. Fesenmaier (Eds.), Proceedings of international conference on information technology and tourism, Austria (pp. 377–386). Berlin: Springer.

    Google Scholar 

  • Godart, J.-M. (2001b). Combinatorial optimisation for trip planning. Belgian Journal of Operations Research, Statistics and Computer Science, 41(1–2), 59–68.

    Google Scholar 

  • Godart, J.-M. (2003). Beyond the trip planning problem for effective computer-assisted customization. In A. Frew, et al. (Eds.), Information and communication technologies in tourism, Austria (pp. 163–172). Berlin: Springer.

    Google Scholar 

  • Godart, J.-M. (2005). Challenges in real world sightseeing tour optimization using meta-heuristics. In Proceedings of the 6th WSEAS int. conf. on evolutionary computing, Lisbon, Portugal, June 16–18, 2005 (pp. 233–238).

    Google Scholar 

  • Golden, B. L., Levy, L., & Vohra, R. (1987). The orienteering problem. Naval Research Logistics, 34, 307–318.

    Article  Google Scholar 

  • Golumbic, M. C., & Shamir, R. (1993). Complexity and algorithms for reasoning about time: a graph-theoretic approach. Journal of the ACM, 40(5), 1108–1133.

    Article  Google Scholar 

  • Gutin, G., & Punnen, A. P. (2002). The traveling Salesman problem and its variations (1st edn.). Dordrecht: Kluwer Academic.

    Google Scholar 

  • Hajös, G. (1957). Über eine Art von Graphen. Intern. Math. Nachr. 11, Problem 65.

    Google Scholar 

  • Hersh, M., & Ladany, S. P. (1989). The determination of optimal cruise strategies. INFOR Information Systems and Operational Research, 27(1), 48–57. Special Issue on Transportation.

    Google Scholar 

  • Kendall, D. G. (1969). Incidence matrices, interval graphs, and seriation in archaeology. Pacific Journal of Mathematics, 28, 565–570.

    Article  Google Scholar 

  • Kendall, D. G. (1971). Seriation from abundance matrices, mathematics in the archaeological and historical sciences (pp. 215–252). Edinburgh: Edinburgh University Press.

    Google Scholar 

  • Ladany, S. P. (1975). Management science applications to leisure-time operations. In B. V. Dean (Ed.), No 4 in the Studies in management science and systems series. Amsterdam/New York: North-Holland/American Elsevier.

    Google Scholar 

  • Ladany, S. (1976). Dynamic operating rules for motel reservations. Decision Sciences, 7(4), 829–840.

    Article  Google Scholar 

  • Ladany, S. (1977a). A model for optimal hotel size. International Journal of Systems Science, 8(2), 121–129.

    Article  Google Scholar 

  • Ladany, S. (1977b). Bayesian dynamic operating rules for optimal hotel reservations. Zeitschrift Für Operations- Research, 21, B165–B176.

    Google Scholar 

  • Ladany, S. P. (1996). Optimal market segmentation of hotel rooms—the non-linear case. Omega, 24(1), 29–36.

    Article  Google Scholar 

  • Ladany, S. P. (1999). Optimal tourists bus tours. Tourism Economics, 5(2), 175–190.

    Google Scholar 

  • Ladany, S. P. (2001). Optimal hotel segmentation mix strategy. International Journal of Services Technology and Management, 2(1/2), 18–27. Special Issue on Yield Management, Moments of Yield—The Optimal Sale of Perishable Products, S.-E. Andersson (Ed.).

    Article  Google Scholar 

  • Ladany, S. P., & Arbel, A. (1991). Optimal cruise-liner passenger cabin pricing policy. Central European Journal of Operations Research, 55(2), 136–147. Special Issue on Water Transportation.

    Article  Google Scholar 

  • Ladany, S. P., & Chou, F.-S. (2001). Optimal yield policy with infiltration consideration. International Journal of Services Technology and Management, 2(1/2), 4–17. Special Issue on Yield Management, Moments of Yield—The Optimal Sale of Perishable Products, S.-E. Andersson (Ed.).

    Article  Google Scholar 

  • Ladany, S. P., & Sklar, M. G. (2005). Optimal mix of playground equipment. International Journal of Management and Decision Making, 6(2), 148–157.

    Article  Google Scholar 

  • Lai, K.-K., & Ng, W.-L. (2005). A stochastic approach to hotel revenue optimization. Computers & Operations Research, 32, 1059–1072.

    Article  Google Scholar 

  • Lemeshev, M., & Shcherbina, O. A. (1986). Optimization of recreational activity. Moscow: Ekonomika (in Russian).

    Google Scholar 

  • Leong, T.-Y., & Ladany, S. P. (2001). Optimal cruise itinerary design development. International Journal of Services Technology and Management, 2(1/2), 130–141. Special Issue on Yield Management, Moments of Yield—The Optimal Sale of Perishable Products, S.-E. Andersson (Ed.).

    Article  Google Scholar 

  • Liberman, V., & Yechiali, U. (1977). Hotel overbooking problem—inventory system with stochastic cancellations. Advances in Applied Probability, 9, 220–230.

    Article  Google Scholar 

  • Liberman, V., & Yechiali, U. (1978). On the hotel overbooking problem—an inventory system with stochastic cancellations. Management Science, 24, 1117–1126.

    Article  Google Scholar 

  • McGill, J. I., & van Ryzin, G. J. (1999). Revenue management: research overview and prospects. Transportation Science, 33(2), 233–256.

    Article  Google Scholar 

  • Meidanis, J., Porto, O., & Telles, G. P. (1998). On the consecutive ones property. Discrete Applied Mathematics, 88, 325–354.

    Article  Google Scholar 

  • Nökel, K. (1991). Temporally distributed symptoms in technical diagnosis. New York: Springer.

    Book  Google Scholar 

  • Papadimitriou, C., & Yannakakis, M. (1979). Scheduling interval ordered tasks. SIAM Journal on Computing, 8, 405–409.

    Article  Google Scholar 

  • Penz, A. J. (1975). Outdoor recreation area: capacity and formulation of use policy. Management Science, 22(2), 139–147.

    Article  Google Scholar 

  • Pevzner, P. A. (2000). Computational molecular biology: an algorithmic approach. Cambridge: The MIT Press.

    Google Scholar 

  • Ricci, F. (2002). Travel recommender systems. Journal IEEE Intelligent Systems, 17, 55–57.

    Google Scholar 

  • Rothstein, M. (1968). Stochastic models for airline booking policies, Ph.D. thesis, Graduate School of Engineering and Science, New York University, New York, NY.

  • Rothstein, M. (1971). Airline overbooking: the state of the art. Journal of Transport Economics and Policy, 5, 96–99.

    Google Scholar 

  • Rothstein, M. (1974). Hotel overbooking as a Markovian sequential decision process. Decision Sciences, 5, 389–404.

    Article  Google Scholar 

  • Rothstein, M. (1985). OR and the airline overbooking problem. Operational Research, 33, 237–248.

    Article  Google Scholar 

  • Schilde, M., Doerner, K., Hartl, R., & Kiechle, G. (2009). Metaheuristics for the biobjective orienteering problem. Swarm Intelligence, 3, 179–201.

    Article  Google Scholar 

  • Schwinger, W., Grüni, C. H., Pröll, B., Retschitzegger, W., & Schauerhuber, A. (2005). Context-awareness in mobile tourism guides—a comprehensive survey (Technical Report). Johannes Kepler University Linz, IFS/TK. URL: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.72.4602.

  • Shcherbina, O. A. (1983). On local algorithms for the solution of quasi-block problems of discrete programming. Problemy Kibernetiki, 40, 171–200 (in Russian).

    Google Scholar 

  • Shcherbina, O. A. (1985). Models of perspective planning of recereational systems, with the Crimea taken as an example. Ekonomika I Matematiceskie Metody, 21(1), 156–160 (in Russian).

    Google Scholar 

  • Shcherbina, O. A. (1986). A unimodular problem of integer programming. USSR Computational Mathematics and Mathematical Physics, 26(4), 88–90 (English. Russian original).

    Article  Google Scholar 

  • Shcherbina, O. A., & Shembeleva, E. A. (2008). Computer-based system of tourism and recreational systems study and optimization. Tourism Analysis: An Interdisciplinary Journal, 13, 93–98.

    Article  Google Scholar 

  • Shcherbina, O. A., & Shembeleva, E. A. (2010). Modeling tourism sustainable development. In T. Sobh & K. Elleithy (Eds.), CISSE 2009 proceedings. Innovations in computing sciences and software engineering (Vol. 2, pp. 551–556). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Souffriau, W., & Vansteenwegen, P. (2010). Tourist trip planning functionalities: state-of-the-art and future. In F. Daniel & F. M. Facca (Eds.), LNCS: Vol. 6385. Current trends in web engineering (pp. 474–485). Berlin: Springer.

    Chapter  Google Scholar 

  • Souffriau, W., Vansteenwegen, P., Vertommen, J., Vanden Berghe, G., & Van Oudheusden, D. (2008). A personalised tourist trip design algorithm for mobile tourist guides. Applied Artificial Intelligence, 22(10), 964–985.

    Article  Google Scholar 

  • Sun, X., Jiao, Y., & Tian, P. (2011). Marketing research and revenue optimization for the cruise industry: a concise review. International Journal of Hospitality Management, 3, 746–755.

    Article  Google Scholar 

  • Talluri, K., & van Ryzin, J. (2004). The theory and practice of revenue management. Boston: Kluwer Academic.

    Book  Google Scholar 

  • Taylor, B. W., & Keown, A. J. (1978). Planning urban recreational facilities with integer goal programming. The Journal of the Operational Research Society, 29, 751–758.

    Article  Google Scholar 

  • ten Hagen, K. T., Kramer, R., Hermkes, M., Schumann, B., & Mueller, P. (2005). Semantic matching and heuristic search for a dynamic tour guide. In Information and communication technologies in tourism 2005, proceedings of ENTER (pp. 149–159).

    Chapter  Google Scholar 

  • Van Hentenryck, P., Bent, R., Mercier, L., & Vergados, Y. (2009). Online stochastic reservation systems. Annals of Operations Research, 171(1), 101–126.

    Article  Google Scholar 

  • Vansteenwegen, P., & Van Oudheusden, D. (2007). The mobile tourist guide: an OR opportunity. OR Insights, 20(3), 21–27.

    Article  Google Scholar 

  • Vansteenwegen, P., Souffriau, W., & Van Oudheusden, D. (2011a). The orienteering problem: a survey. European Journal of Operational Research, 209(1), 1–10.

    Article  Google Scholar 

  • Vansteenwegen, P., Souffriau, W., Vanden Berghe, G., & Van Oudheusden, D. (2011b). The city trip planner: an expert system for tourists. Expert Systems With Applications, 8(6), 6540–6546.

    Article  Google Scholar 

  • Wang, X., Golden, B., & Wasil, E. (2008). Using a genetic algorithm to solve the generalized orienteering problem. In B. Golden, S. Raghavan, & E. Wasil (Eds.), The vehicle routing problem: latest advances and new challenges (pp. 263–274).

    Chapter  Google Scholar 

  • Ward, S. A., & Halstead, R. H. (1990). Computation structures. Cambridge: MIT Press.

    Google Scholar 

  • Werthner, H., & Klein, S. (1999). Information technology and tourism—a challenging relationship (p. 323). New York: Springer.

    Book  Google Scholar 

  • Wilkinson, E. M. (1971). Archaeological seriation and the travelling salesman problem. Mathematics in the archaeological and historical sciences (pp. 276–287). Edinburgh: Edinburgh University Press.

    Google Scholar 

  • Xu, X. (2007). An overview of research on revenue management: current issues and future research. International Journal of Revenue Management, 1, 97–128.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oleg Shcherbina.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shcherbina, O., Shembeleva, E. Modeling recreational systems using optimization techniques and information technologies. Ann Oper Res 221, 309–329 (2014). https://doi.org/10.1007/s10479-011-1011-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-011-1011-3

Keywords