Abstract
Classical Swine Fever is a viral disease of pigs that causes severe restrictions on the movement of pigs and pig products in the affected areas. The knowledge of its spread patterns and risk factors would help to implement specific measures for controlling future outbreaks. In this article, we describe in detail a spatial hybrid model, called Be-FAST, based on the combination of a stochastic Individual-Based model (modeling the interactions between the farms, considered as individuals) for between-farm spread with a Susceptible-Infected model for within-farm spread, to simulate the spread of this disease and identify risk zones in a given region. First, we focus on the mathematical formulation of each component of the model. Then, in order to validate Be-FAST, we perform various numerical experiments considering the Spanish province of Segovia. Obtained results are compared with the ones given by two other Individual-Based models and real outbreaks data from Segovia and The Netherlands.
Similar content being viewed by others
Notes
The value of the parameters used by Be-FAST should be set in function of the studied region (for example, due to the specific legislations). For instance, the parameters values considered during this work are adapted for their application to the province of Segovia (see Sect. 4). In particular the parameters referenced by J.C.L. (2008) or M.A.P.A. (2006) in Table 2 have been obtained by expert opinions of the Spanish administration. The reliability of those parameters is discussed in Martínez-López et al. (2012).
This control measure is adapted for studying CSFV spread in the province of Segovia (see Sect. 4). For larger areas (e.g., a country), the movement restrictions should be limited to a part of the studied region.
References
Anderson, R., & May, R. (1979). Population biology of infectious diseases: Part 1. Nature, 280, 361–367.
Brauer, F., & Castillo-Chavez, C. (2001). Mathematical models in population biology and epidemiology. Berlin: Springer.
DeAngelis, D., & Gross, L. (1991). Individual-based models and approaches in ecology. New York: Chapman and Hall.
DeRose, L., & Padua, D. (1999). Techniques for the translation of Matlab programs into Fortran 90. ACM Trans. Program. Lang. Syst., 21(2), 285–322.
Edwards, S., Fukusho, A., Lefevre, P., Lipowski, A., Pejsak, Z., Roehe, P., & Westergaard, J. (2000). Classical Swine Fever: the global situation. Vet. Microbiol., 27(3), 103–109.
E.S.R.I. (2012). ArcGIS. http://www.esri.com/software/arcgis/.
Elbers, A., Stegeman, A., Moser, H., Ekker, H., Smak, J., & Pluimers, H. (1999). The CSF epidemic 1997–1998 in The Netherlands: descriptive epidemiology. Prev. Vet. Med., 4, 157–184.
Fernández, E., Ivorra, B., Ramos, A., Martínez-Lopez, B., & Sánchez-Vizcaíno, J. (2011). Diseño de un modelo económico y de planes de control para una epidemia de Peste Porcina Clásica. Preprint de la Universidad Complutense de Madrid. http://www.ucm.es/centros/cont/descargas/documento28250.pdf.
Jalvingh, A., Nielen, M., Maurice, H., Stegeman, A., Elbers, A.R., & Dijkhuizen, A. (1999). Spatial and stochastic simulation to evaluate the impact of events and control measures on the 1997–1998 CSF epidemic in The Netherlands. Prev. Vet. Med., 42, 271–295.
J.C.L. (2008). Junta de Castilla y Leon—Agricultura y Ganadería, expert opinion elicitation performed for FMD and CSF. http://www.jcyl.es.
Kartsen, S., Rave, G., & Krieter, J. (2005a). Monte Carlo simulation of CSF epidemics and control I. General concepts and description of the model. Vet. Microbiol., 108, 187–198.
Kartsen, S., Rave, G., & Krieter, J. (2005b). Monte Carlo simulation of CSF epidemics and control II. Validation of the model. Vet. Microbiol., 108, 199–205.
Kartsen, S., Rave, G., Teuffert, J., & Krieter, J. (2007). Evaluation of measures for the control of CSF using a simulation model. Arch. Tierz., 50, 92–104.
Klinkenberg, D., DeBree, J., Laevens, H., & DeJong, M. C. M. (2002). Within- and between-pen transmission of Classical Swine Fever Virus: a new method to estimate the basic reproduction ratio from transmission experiments. Epidemiol. Infect., 128, 293–299.
Koenen, F., Van Caenegem, G., Vermeersch, J., Vandenheede, J., & Deluyker, H. (1996). Epidemiological characteristics of an outbreak of Classical Swine Fever in an area of high pig density. Vet. Rec., 139(15), 367–371.
Lyytikäinen, T., Niemi, J., Sahlström, L., Virtanen, T., & Lehtonen, H. (2011). The spread of Foot-and-Mouth Disease (FMD) within Finland and emergency vaccination in case of an epidemic outbreak. Finnish Food Safety Authority Evira, Helsinki. Research Reports, 1/2011. http://www.evira.fi/portal/en/evira/publications/?a=view&productId=240.
Mangen, M., Nielen, M., & Burrell, A. (2002). Simulated effect of pig-population density on epidemic size and choice of control strategy for Classical Swine Fever epidemics in The Netherlands. Prev. Vet. Med., 56(2), 141–163.
M.A.P.A. (2006). Ministerio de Agricultura, Pesca y Alimentación, Manual práctico de actuaciones contra la PPC. http://rasve.mapa.es/Publica/InformacionGeneral/Documentos/Manuales/Manual%20PPC%20enero%202011.pdf.
Martínez-López, B. (2009). Desarrollo de modelos epidemiológicos cuantitativos para el análisis del riesgo de introducción y difusión potencial de los virus de la Fiebre Aftosa y de la Peste Porcina Clásica en España. PhD thesis, Univ. Complutense de Madrid, Spain.
Martínez-López, B., Ivorra, B., Ramos, A. M., & Sánchez-Vizcaíno, J. (2011). A novel spatial and stochastic model to evaluate the within and between farm transmission of CSF Virus: 1. General concepts and description of the model. Vet. Microbiol., 147(3), 300–309.
Martínez-López, B., Ivorra, B., Ramos, A. M., & Sánchez-Vizcaíno, J. (2012). A novel spatial and stochastic model to evaluate the within and between farm transmission of CSF Virus: 2. Model sensitivity analysis. Vet. Microbiol., 155(1), 21–30.
Martínez-López, B., Pérez, A., & Sánchez-Vizcaíno, J. (2009). A stochastic model to quantify the risk for Classical Swine Fever Virus introduction through import of domestic and wild boars into Spain. Epidemiol. Infect., 137(10), 1505–1515.
Massey Univ. (2012). InterSpread Plus. http://www.interspreadplus.com.
MathWorks (2012). Matlab. www.mathworks.com/products/matlab/.
Mintiens, K., Laevens, H., Dewulf, J., Boelaert, F., Verloo, D., & Koenen, F. (2003). Risk analysis of the spread of CSF virus through neighborhood infections for different regions in Belgium. Prev. Vet. Med., 60(1), 27–36.
Moennig, V. (2000). Introduction to Classical Swine Fever: virus, disease and control policy. Vet. Microbiol., 73(2), 93–102.
Niemi, J., Lehtonen, H., Pietola, K., Lyytikäinen, T., & Raulo, S. (2008). Economic implications of potential Classical Swine Fever outbreaks for Finnish pig production sector. Prev. Vet. Med., 84, 194–212.
Ribbens, S., Dewulf, J., Koenen, F., Laevens, H., & de Kruif, A. (2004). Transmission of Classical Swine Fever. A review. Vet. Q., 26, 146–155.
Sanson, R. (1993). The development of a decision support system for an animal disease emergency. PhD thesis, Massey University, New Zealand.
Stegeman, A., Elbers, A., Bouma, A., & DeJong, M. (2002). Rate of inter-farm transmission of Classical Swine Fever Virus by different types of contact during the 1997–1998 epidemic in The Netherlands. Epidemiol. Infect., 128, 285–291.
Stegeman, A., Elbers, A., Smak, J., & DeJong, M. (1999). Quantification of the transmission of Classical Swine Fever Virus between farms during the 1997–1998 epidemic in The Netherlands. Prev. Vet. Med., 42, 219–234.
Acknowledgements
This work was carried out thanks to the financial support of the Spanish Ministry of Science and Innovation under projects MTM2008-04621 and MTM2011-22658; the project CONS-C6-0356 of the I-MATH Proyecto Ingenio Mathematica; the Research Group MOMAT supported by the “Banco Santander” and the “Universidad Complutense de Madrid” (Ref. 910480); and the “Comunidad de Madrid” and “European Social Fund” through project S2009/PPQ-1551. We gratefully acknowledge the assistance of Olga Minguez, her team, the Regional Government of Castilla and Leon Region and the Spanish Ministry of the Environment and Rural and Marine Affairs for providing us data and technical assistance. A.M. Ramos has also been Funded by Fundación Caja Madrid.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Ivorra, B., Martínez-López, B., Sánchez-Vizcaíno, J.M. et al. Mathematical formulation and validation of the Be-FAST model for Classical Swine Fever Virus spread between and within farms. Ann Oper Res 219, 25–47 (2014). https://doi.org/10.1007/s10479-012-1257-4
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10479-012-1257-4