Skip to main content
Log in

Design of discrete Dutch auctions with an uncertain number of bidders

  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

The focus of this paper is on Dutch auctions where the bidding prices are restricted to a finite set of values and the number of bidders follows a Poisson distribution. The goal is to determine what the discrete bid levels should be to maximize the auctioneer’s expected revenue, which is the same as the average selling price of the object under consideration. We take a new approach to the problem by formulating the descending-price competitive bidding process as a nonlinear program. The optimal solution indicates that the interval between two successive bids should be wider as the Dutch auction progresses. Moreover, the auctioneer’s maximum expected revenue increases with the number of bid levels to be set as well as the expected number of bidders. Numerical examples are provided to illustrate the key results from this study and their managerial implications are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alderson, M., Brown, K., & Lummer, S. (1987). Dutch auction rate preferred stock. Financial Management, 16, 68–73.

    Article  Google Scholar 

  • An, Y., Hu, Y., & Shum, M. (2010). Estimating first-price auctions with an unknown number of bidders: a misclassification approach. Journal of Econometrics, 157, 328–341.

    Article  Google Scholar 

  • Bagwell, L. (1992). Dutch auction repurchases: an analysis of shareholder heterogeneity. Journal of Finance, 47, 71–105.

    Article  Google Scholar 

  • Bajari, P., & Hortaçsu, A. (2003). The winner’s curse, reserve prices, and endogenous entry: empirical insights from eBay auctions. The Rand Journal of Economics, 34, 329–355.

    Article  Google Scholar 

  • Baker, J., & Song, J. (2007). A review of single-item Internet auction literature and a model for future research. Journal of Electronic Commerce in Organizations, 5, 43–68.

    Article  Google Scholar 

  • Bazaraa, M., Sherali, H., & Shetty, C. (2006). Nonlinear programming: theory and algorithms (3rd ed.). Hoboken: Wiley.

    Book  Google Scholar 

  • Binmore, K., Harbord, D., & Hernando, A. (2004). Reviewing the financial terms of Channel 3 licenses: estimating incumbents’ bids. Research report, ITV plc, London, UK.

  • Caldentey, R., & Vulcano, G. (2007). Online auction and list price revenue management. Management Science, 53, 795–813.

    Article  Google Scholar 

  • Chakravarti, D., Greenleaf, E., Sinha, A., Cheema, A., Cox, J., Friedman, D., Ho, T. H., Isaac, R. M., Mitchell, A. A., Rapoport, A., Rothkopf, M. H., Srivastava, J., & Zwick, R. (2002). Auctions: research opportunities in marketing. Marketing Letters, 13, 281–296.

    Article  Google Scholar 

  • Chou, F., & Parlar, M. (2005). Optimal quota allocation for a revenue-maximizing auction holder facing a random number of bidders. International Transactions in Operational Research, 12, 559–580.

    Article  Google Scholar 

  • Chwe, M. (1989). The discrete bid first auction. Economics Letters, 31, 303–306.

    Article  Google Scholar 

  • Cramton, P., Filiz-Ozbay, E., Ozbay, Y., & Sujarittanonta, P. (2011). Discrete clock auctions: an experimental study. Working paper, Department of Economics, University of Maryland, MD.

  • Crawford, V., & Kuo, P. (2003). A dual Dutch auction in Taipei: the choice of numeraire and auction form in multi-object auctions with bundling. Journal of Economic Behavior & Organization, 51, 427–442.

    Article  Google Scholar 

  • David, E., Rogers, A., Jennings, N., Schiff, J., Kraus, S., & Rothkopf, M. (2007). Optimal design of English auctions with discrete bid levels. ACM Transactions on Internet Technology, 7, 1–34.

    Article  Google Scholar 

  • Etzion, H., Pinker, E., & Seidmann, A. (2006). Analyzing the simultaneous use of auctions and posted prices for online selling. Manufacturing & Service Operations Management, 8, 68–91.

    Article  Google Scholar 

  • Gallien, J., & Gupta, S. (2007). Temporary and permanent buyout prices in online auctions. Management Science, 53, 814–833.

    Article  Google Scholar 

  • Gay, G., Kale, J., & Noe, T. (1996). (Dutch) Auction share repurchases. Economica, 63, 57–81.

    Article  Google Scholar 

  • Giulioni, G., & Bucciarelli, E. (2011). Agent’s behaviour in a sequential Dutch auction: evidence from the Pescara wholesale fish market. Applied Economics Letters, 18, 455–460.

    Article  Google Scholar 

  • IPART (2007). Reforming Port Botany’s links with inland transport (Draft report). New South Wales, Australia: Independent Pricing and Regulatory Tribunal.

  • Jiang, A. X., & Leyton-Brown, K. (2005). Estimating bidders’ valuation distributions in online auctions. In Proceedings of IJCAI-05 workshop on game theoretic and decision theoretic agents, Edinburgh, Scotland, July 30–August 5 (pp. 98–107).

  • Katok, E., & Roth, A. (2004). Auctions of homogeneous goods with increasing returns: experimental comparison of alternative “Dutch” auctions. Management Science, 50, 1044–1063.

    Article  Google Scholar 

  • Keefer, L. (1991). Resource allocation models with risk aversion and probabilistic dependence: offshore oil and gas bidding. Management Science, 37, 377–395.

    Article  Google Scholar 

  • Klemperer, P. (2004). Auctions: theory and practice. Princeton: Princeton University Press.

    Google Scholar 

  • Krishna, V. (2002). Auction theory. San Diego: Academic Press.

    Google Scholar 

  • Levin, D., & Ozdenoren, E. (2004). Auctions with uncertain numbers of bidders. Journal of Economic Theory, 118, 229–251.

    Article  Google Scholar 

  • Levin, D., & Smith, J. L. (1994). Equilibrium in auctions with entry. The American Economic Review, 84, 585–599.

    Google Scholar 

  • Li, Z. (2010). Optimal design of Dutch auctions with discrete bid levels. Unpublished doctoral dissertation. Denton, TX: University of North Texas.

  • Li, Z., & Kuo, C.-C. (2011). Revenue-maximizing Dutch auctions with discrete bid levels. European Journal of Operational Research, 215, 721–729.

    Article  Google Scholar 

  • Lu, F., & Perrigne, I. (2008). Estimating risk aversion from ascending and sealed-bid auctions: the case of timber auction data. Journal of Applied Econometrics, 23, 871–896.

    Article  Google Scholar 

  • Ma, J., Wang, S., & Lai, K. K. (2004). Shill bidding in online English auctions with a random number of bidders. International Journal of Information Technology & Decision Making, 3, 539–562.

    Article  Google Scholar 

  • Mathews, T. (2006). Bidder welfare in an auction with a buyout option. International Game Theory Review, 8, 595–612.

    Article  Google Scholar 

  • Mathews, T., & Sengupta, A. (2008). Sealed bid second price auctions with discrete bidding. Applied Economics Research Bulletin, Special Issue, 1, 31–52.

    Google Scholar 

  • McAfee, R. P., & McMillan, J. (1987). Auctions with a stochastic number of bidders. Journal of Economic Theory, 43, 1–19.

    Article  Google Scholar 

  • McAfee, R. P., & Vincent, D. (1993). The declining price anomaly. Journal of Economic Theory, 60, 191–212.

    Article  Google Scholar 

  • Milgrom, P. (2004). Putting auction theory to work. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Min, J. (2010). Applied mechanism design: solving for the optimal collusive mechanism at first-price auctions. Unpublished honor thesis, Duke University, NC.

  • Pekeč, A. S., & Tsetlin, I. (2008). Revenue ranking of discriminatory and uniform auctions with an unknown number of bidders. Management Science, 54, 1610–1623.

    Article  Google Scholar 

  • Robicheaux, S., & Herrington, C. (2007). Google’s Dutch auction initial public offering. Journal of the International Academy for Case Studies, 13, 7–11.

    Google Scholar 

  • Rothkopf, M., & Harstad, R. (1994). On the role of discrete bid levels in oral auctions. European Journal of Operational Research, 74, 572–581.

    Article  Google Scholar 

  • Shi, J., & Chang, A.-C. (2009). Revenue and duration of oral auction. Journal of Service Science and Management, 2, 368–377.

    Article  Google Scholar 

  • Sujarittanonta, P. (2010). Design of discrete auction. Unpublished doctoral dissertation. College Park, MD: University of Maryland.

  • Vakrat, Y., & Seidmann, A. (2000). Implications of the bidders’ arrival process on the design of online auctions. In Proceedings of the 33rd Hawaii international conference on system sciences, Maui, HI (pp. 1–10).

    Google Scholar 

  • Vickrey, W. (1961). Counterspeculation, auctions, and competitive sealed tenders. Journal of Finance, 16, 8–37.

    Article  Google Scholar 

  • Winston, W. (1994). Operations research: applications and algorithms. Belmont: Thomson.

    Google Scholar 

  • Yamey, B. (1972). Why 2,310,000 [pounds] for a Velazquez?: an auction bidding rule. Journal of Political Economy, 80, 1323–1327.

    Article  Google Scholar 

  • Yu, J. (1999). Discrete approximation of continuous allocation mechanisms. Unpublished doctoral dissertation. Pasadena, CA: California Institute of Technology.

  • Yuen, W., Sung, C., & Wong, W. (2002). Optimal price decremental strategy for Dutch auctions. Communications in Information and Systems, 2, 411–434.

    Google Scholar 

  • Zheng, X. (2009). Quantifying the cost of excess market thickness in timber sale auctions. International Journal of Industrial Organization, 27, 553–566.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ching-Chung Kuo.

Appendices

Appendix A: Proof of Proposition 1

It suffices to show that the leading principal minor of the objective function’s Hessian of order i has the same sign as (−1)i (Bazaraa et al. 2006). Let \(L_{i} = \frac{l_{i}}{\bar{v}}\), i=1,2,…,m, and the NLP in (2) can be rewritten as

$$ \everymath{\displaystyle }\begin{array}{@{}l@{\quad}l} \mathrm{Maximize} & Z = \bar{v}e^{ - \lambda }\sum_{i = 1}^{m} L_{i} \bigl[ e^{\lambda L_{i + 1}} - e^{\lambda L_{i}} \bigr] \\ \noalign{\vspace{5pt}} \mathrm{subject\ to{:}} & L_{i + 1} \ge L_{i},\quad i = 1, \ldots, m \\ \noalign{\vspace{5pt}} & L_{1} = 0 \\ \noalign{\vspace{5pt}} & L_{m + 1} = 1 \end{array} $$
(A.1)

For each L i , i=2,3,…,m, we have

Let H(Z) be the Hessian of the objective function in (A.1), it follows that

$$H( Z ) = \bar{v}\lambda e^{ - \lambda } \arraycolsep=1.5pt \left[ \begin{array} {ccccc} e^{\lambda L_{2}} [ - 2 - \lambda( L_{2} - L_{1} ) ] & e^{\lambda L_{3}} & 0 & \cdots & 0 \\ \noalign{\vspace{2pt}} e^{\lambda L_{3}} & e^{\lambda L_{3}}[ - 2 - \lambda( L_{3} - L_{2} ) ] & e^{\lambda L_{4}} & \cdots & 0 \\ \noalign{\vspace{2pt}} 0 & e^{\lambda L_{4}} & e^{\lambda L_{4}}[ - 2 - \lambda( L_{4} - L_{3} ) ] & \cdots & 0 \\ \noalign{\vspace{2pt}} \cdots & \cdots & \cdots & \cdots & \cdots \\ \noalign{\vspace{2pt}} 0 & 0 & 0 & \cdots & e^{\lambda L_{m}}[ - 2 - \lambda( L_{m} - L_{m - 1} ) ] \end{array} \right] $$

Further let \(e^{\lambda L_{i + 1}} = e^{\lambda L_{i}} + \Delta( L_{i},\lambda)\), i=2,…,m−1. The Hessian can be rewritten as

$$H( Z ) = \bar{v}\lambda e^{ - \lambda } \arraycolsep=1.5pt \left[ \begin{array} {ccccc} e^{\lambda L_{2}} [ - 2 - \lambda( L_{2} - L_{1} ) ] & e^{\lambda L_{2}} + \Delta( L_{2},\lambda) & 0 & \cdots & 0 \\ \noalign{\vspace{2pt}} e^{\lambda L_{2}} + \Delta( L_{2},\lambda) & e^{\lambda L_{3}}[ - 2 - \lambda( L_{3} - L_{2} ) ] & e^{\lambda L_{3}} + \Delta( L_{3},\lambda) & \cdots & 0 \\ \noalign{\vspace{2pt}} 0 & e^{\lambda L_{3}} + \Delta( L_{3},\lambda) & e^{\lambda L_{4}}[ - 2 - \lambda( L_{4} - L_{3} ) ] & \cdots & 0 \\ \noalign{\vspace{2pt}} \cdots & \cdots & \cdots & \cdots & \cdots \\ \noalign{\vspace{2pt}} 0 & 0 & 0 & \cdots & e^{\lambda L_{m}}[ - 2 - \lambda( L_{m} - L_{m - 1} ) ] \end{array} \right] $$

Now, H(Z) is decomposed into H 1(Z) and H 2(Z) below so that

We will prove that the leading principal minors of each of H 1(Z) and H 2(Z) of order i has the same sign as (−1)i. To begin, let M i be the leading principal minor of H 1(Z) of order i. Then

and

$$M_{i} = ( - 1 )^{i}2^{i}\bigl( \bar{v}\lambda e^{ - \lambda } \bigr)^{i}\prod_{k = 1}^{i} e^{\lambda L_{k}},\quad i \ge 5 $$

It is clear that M i has the same sign as (−1)i, i=1,2,…,m.

Likewise, let N i be the leading principal minor of H 2(Z) of order i. A similar approach may be followed to demonstrate that

$$N_{i} = ( - 1 )^{i} \bigl( \bar{v}\lambda^{2}e^{ - \lambda } \bigr)^{i}\prod_{k = 1}^{i} e^{\lambda L_{k}} ( L_{k} - L_{k - 1} ) $$

It is seen that N i has the same sign as (−1)i, i=1,2,…,m.

Since the respective leading principal minors of H 1(Z) and H 2(Z) of order i have the same sign as (−1)i, the leading principal minor of H(Z)=H 1(Z)+H 2(Z) of order i has the same sign as (−1)i. This implies that the objective function in (A.1) is concave in L 1,L 2,…,L m and hence in l 1,l 2,…,l m since \(L_{i} = \frac{l_{i}}{\bar{v}}\), i=1,2,…,m.

Appendix B: Proof of Proposition 2

A necessary condition for \(( L_{1}^{*},L_{2}^{*}, \ldots,L_{m}^{*} )\) to be an optimal solution to the NLP in (A.1) is \(\frac{\partial Z}{\partial L_{i}^{*}} = 0\), i=2,3,…,m. Thus, we have

$$ e^{\lambda L_{i + 1}^{*}} - e^{\lambda L_{i}^{*}} - \lambda e^{\lambda L_{i}^{*}} \bigl( L_{i}^{*} - L_{i - 1}^{*} \bigr) = 0 $$
(B.1)

or

$$\frac{e^{\lambda L_{i + 1}^{*}}}{e^{\lambda L_{i}^{*}}} - 1 - \lambda \bigl( L_{i}^{*} - L_{i - 1}^{*} \bigr) = 0 $$

or

$$ e^{\lambda ( L_{i + 1}^{*} - L_{i}^{*} )} = 1 + \lambda \bigl( L_{i}^{*} - L_{i - 1}^{*} \bigr) $$
(B.2)

As a Taylor series representation, we have

(B.3)

It follows from (B.2) and (B.3) that

$$e^{\lambda ( L_{i + 1}^{*} - L_{i}^{*} )} < e^{\lambda ( L_{i}^{*} - L_{i - 1}^{*} )} $$

or

$$L_{i + 1}^{*} - L_{i}^{*} < L_{i}^{*} - L_{i - 1}^{*} $$

Thus, \(l_{i + 1}^{*} - l_{i}^{*} < l_{i}^{*} - l_{i - 1}^{*}\), i=2,3,…,m.

Appendix C: Proof of Proposition 3

Let k∈{0}∪N, x>0, and \(LN( k,x ) = \underbrace{\ln ( 1 + \ln ( 1 + \cdots + \ln ( 1 + x ) ) )}_{k \ln ( \cdot )\mbox{\scriptsize 's involved}}\). Note that LN(0,x)=x. A necessary condition for \(( L_{1}^{*},L_{2}^{*}, \ldots,L_{m}^{*} )\) to be an optimal solution to the NLP in (A.1) is \(\frac{\partial Z}{\partial L_{i}^{*}} = 0\), i=2,3,…,m, or, \(e^{\lambda L_{i + 1}^{*}} - e^{\lambda L_{i}^{*}} - \lambda e^{\lambda L_{i}^{*}}( L_{i}^{*} - L_{i - 1}^{*} ) = 0\).

For i=2, the following holds since \(L_{1}^{*} = 0\):

$$e^{\lambda L_{3}^{*}} - e^{\lambda L_{2}^{*}} - \lambda e^{\lambda L_{2}^{*}}L_{2}^{*} = 0 $$

Thus,

(C.1)

For i=3, one has

$$e^{\lambda L_{4}^{*}} - e^{\lambda L_{3}^{*}} - \lambda e^{\lambda L_{3}^{*}} \bigl( L_{3}^{*} - L_{2}^{*} \bigr) = 0 $$

or

$$e^{\lambda L_{4}^{*}} = e^{\lambda L_{3}^{*}} \bigl( \lambda L_{3}^{*} - \lambda L_{2}^{*} + 1 \bigr) $$

So we have

or

$$L_{4}^{*} = \frac{1}{\lambda} \sum _{k = 0}^{2} LN \bigl( k,\lambda L_{2}^{*} \bigr) $$

Continuing in the same fashion, one can obtain the general expression below and see that \(L_{i}^{*}\) is a function of \(L_{2}^{*}\) as well as λ, i=3,4,…,m.

$$ L_{i}^{*} = \frac{1}{\lambda} \sum _{k = 0}^{i - 2} LN \bigl( k,\lambda L_{2}^{*} \bigr) $$
(C.2)

For the Dutch auction with m=2, we have \(L_{m + 1}^{*} = L_{3}^{*} = 1\). It follows from (C.1) that

$$\lambda L_{2}^{*} + \ln \bigl( 1 + \lambda L_{2}^{*} \bigr) = \lambda $$

or

$$\lambda L_{2}^{*} = e^{\lambda ( 1 - L_{2}^{*} )} - 1 $$

When m=3, \(L_{m + 1}^{*} = L_{4}^{*} = 1\) and we see from (C.2) that

$$\lambda L_{2}^{*} + \ln \bigl( 1 + \lambda L_{2}^{*} \bigr) + \ln \bigl( 1 + \ln \bigl( 1 + \lambda L_{2}^{*} \bigr) \bigr) = \lambda $$

or

$$\lambda L_{2}^{*} = e^{\frac{e^{\lambda ( 1 - L_{2}^{*} )}}{1 + \lambda L_{2}^{*}} - 1} - 1 $$

When m=4, \(L_{m + 1}^{*} = L_{5}^{*} = 1\) and it is seen from (C.2) again that

$$\lambda L_{2}^{*} + \ln \bigl( 1 + \lambda L_{2}^{*} \bigr) + \ln \bigl( 1 + \ln \bigl( 1 + \lambda L_{2}^{*} \bigr) \bigr) + \ln \bigl( 1 + \ln \bigl( 1 + \ln \bigl( 1 + \lambda L_{2}^{*} \bigr) \bigr) \bigr) = \lambda $$

or

$$\lambda L_{2}^{*} = e^{e^{\frac{e^{\lambda ( 1 - L_{2}^{*} )}}{ ( 1 + \lambda L_{2}^{*} ) ( 1 + \ln ( 1 + \lambda L_{2}^{*} ) )} - 1} - 1} - 1 $$

In general, for a Dutch auction with m bid levels, one has

$$\lambda L_{2}^{*} = e^{\scriptstyle\cdot^{\scriptstyle\cdot^{\scriptstyle\cdot^{\overbrace{\scriptstyle e^{\frac{e^{\lambda ( 1 - L_{2}^{*} )}}{ ( 1 + \lambda L_{2}^{*} ) ( 1 + \ln ( 1 + \lambda L_{2}^{*} ) ) \cdots (1+\ln (1+\cdots + \ln(1+\lambda L_2^*)))} - 1} } ^{m-1\ \mathrm{EXP}(\cdot)\mbox{\scriptsize's involved}}- 1}}}}- 1 $$

It follows that, for i=2,3,…,m,

$$LN\bigl(k,\lambda L_{2}^{*}\bigr) = {\underbrace{\ln\bigl( \ln \cdots \ln}_{k-1\ \ln(\cdot)\mbox{\scriptsize 's involved}}} \bigl( e^{\scriptstyle\cdot^{\scriptstyle\cdot^{\scriptstyle\cdot^{\overbrace{\scriptstyle e^{\frac{e^{\lambda ( 1 - L_{2}^{*} )}}{ ( 1 + \lambda L_{2}^{*} ) ( 1 + \ln ( 1 + \lambda L_{2}^{*} ) ) \cdots (1+\ln (1+\cdots + \ln(1+\lambda L_2^*)))} - 1}} ^{m-2\ \mathrm{EXP}(\cdot)\mbox{\scriptsize's involved}}}- 1}}} +1\bigr) +1\bigr) $$

Since the increasing rate of the exponential function is greater than the decreasing rate of \(\frac{1}{\lambda} \), \(\frac{1}{\lambda} LN( k, \lambda L_{2}^{*} )\) is an increasing function of λ. As a result, \(L_{i}^{*} = \frac{1}{\lambda} \sum_{k = 0}^{i - 2} LN( k,\lambda L_{2}^{*} )\) is an increasing function of λ, so is \(l_{i}^{*}\), i=2,3,…,m.

Appendix D: Proof of Proposition 4

Since the optimal bid levels must satisfy (B.1) for i=2,3,…,m, we have

$$\sum_{i = 2}^{m} \bigl[ e^{\lambda L_{i + 1}^{*}} - e^{\lambda L_{i}^{*}} - \lambda e^{\lambda L_{i}^{*}} \bigl( L_{i}^{*} - L_{i - 1}^{*} \bigr) \bigr] = 0 $$

This leads to

or

$$ \sum_{i = 2}^{m} e^{\lambda L_{i}^{*}} \bigl( L_{i}^{*} - L_{i - 1}^{*} \bigr) = \frac{1}{\lambda} \bigl( e^{\lambda } - e^{\lambda L_{2}^{*}} \bigr) $$
(D.1)

In addition, given \(L_{1}^{*} = 0\), one has

$$ \sum_{i = 2}^{m} e^{\lambda L_{i}^{*}} \bigl( L_{i}^{*} - L_{i - 1}^{*} \bigr) = \sum_{i = 2}^{m} L_{i}^{*}e^{\lambda L_{i}^{*}} - \sum _{i = 2}^{m - 1} L_{i}^{*}e^{\lambda L_{i + 1}^{*}} $$
(D.2)

Combining (D.1) and (D.2), we have

$$ \sum_{i = 2}^{m} L_{i}^{*}e^{\lambda L_{i}^{*}} - \sum _{i = 2}^{m - 1} L_{i}^{*}e^{\lambda L_{i + 1}^{*}} = \frac{1}{\lambda} \bigl( e^{\lambda } - e^{\lambda L_{2}^{*}} \bigr) $$
(D.3)

Based on (2) and (D.3), the maximum expected revenue may be expressed as

(D.4)

This completes the proof.

Appendix E: Proof of Proposition 5

To maximize the objective function in (A.1), the following must hold for i=3,4,…,m+1 according to (C.2):

$$L_{i}^{*} = \frac{1}{\lambda} \sum _{k = 0}^{i - 2} LN\bigl( k,\lambda L_{2}^{*} \bigr), $$

where \(LN( k,\lambda L_{2}^{*} ) = \underbrace{\ln ( 1 + \ln ( 1 + \cdots + \ln ( 1 + \lambda L_{2}^{*} ) ) )}_{k\ \ln ( \cdot )\mbox{\scriptsize 's involved}}\). Clearly,

$$ L_{i}^{*} = L_{i - 1}^{*} + \frac{1}{\lambda} LN\bigl( i - 2,\lambda L_{2}^{*} \bigr) $$
(E.1)

If m bid levels are to be set, then \(L_{m + 1}^{*} = 1\) and (C.2) becomes

$$\frac{1}{\lambda} \sum_{k = 0}^{m - 1} LN \bigl( k,\lambda L_{2}^{*} \bigr) = 1 $$

or

$$\lambda = \sum_{k = 0}^{m - 1} LN \bigl( k, \lambda L_{2}^{*} \bigr) $$

or

$$\lambda - \lambda L_{2}^{*} = \sum _{k = 1}^{m - 1} LN \bigl( k,\lambda L_{2}^{*} \bigr) $$

or

(E.2)

Also, according to (E.1), \(L_{m + 1}^{*} = L_{m}^{*} + \frac{1}{\lambda} LN( m - 1,\lambda L_{2}^{*} ) = 1\). Thus, \(L_{m}^{*}\) can be written as

$$ L_{m}^{*} = 1 - \frac{1}{\lambda} LN\bigl( m - 1,\lambda L_{2}^{*} \bigr) $$
(E.3)

Based on (D.4), (E.2) and (E.3), we have

Since \(LN( k,\lambda L_{2}^{*} ) > 0\), k=0,1,…, the right-hand side of \(\sum_{k = 0}^{m - 1} LN( k,\lambda L_{2}^{*} ) = \lambda\) includes more positive items as m increases. It follows that \(LN( k,\lambda L_{2}^{*} )\) is a decreasing function of m. This leads to the result that \(L_{2}^{*}\) decreases with m, so is \(l_{2}^{*} = \bar{v}L_{2}^{*}\). The implication is that each of \(LN( m - 1,\lambda L_{2}^{*} )\) and \(\prod_{k = 0}^{m - 2} [ 1 + LN( k,\lambda L_{2}^{*} ) ]\) is also decreasing function of m. Thus, Z is an increasing function of m. This completes the proof.

Appendix F: Proof of Proposition 6

Observe from (D.4) that

(F.1)

Thus, according to (E.2), (F.1) can be rewritten as

$$Z^{*} = \bar{v}L_{m}^{*} - \bar{v} \frac{\prod_{k = 0}^{m - 2} [ 1 + LN ( k,\lambda L_{2}^{*} ) ] - 1}{\lambda \prod_{k = 0}^{m - 2} [ 1 + LN ( k,\lambda L_{2}^{*} ) ]} $$

Note that \(\frac{\prod_{k = 0}^{m - 2} [ 1 + LN( k,\lambda L_{2}^{*} ) ] - 1}{\lambda \prod_{k = 0}^{m - 2} [ 1 + LN( k,\lambda L_{2}^{*} ) ]}\) is a decreasing function of λ. On the other hand, as shown in Proposition 3, \(l_{m}^{*}\) is an increasing function of λ, so is \(L_{m}^{*}\). Consequently, Z is an increasing function of λ. The proof is complete.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Z., Kuo, CC. Design of discrete Dutch auctions with an uncertain number of bidders. Ann Oper Res 211, 255–272 (2013). https://doi.org/10.1007/s10479-013-1331-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-013-1331-6

Keywords