Skip to main content
Log in

A fuzzy multidimensional multiple-choice knapsack model for project portfolio selection using an evolutionary algorithm

  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

Project portfolio selection problems are inherently complex problems with multiple and often conflicting objectives. Numerous analytical techniques ranging from simple weighted scoring to complex mathematical programming approaches have been proposed to solve these problems with precise data. However, the project data in real-world problems are often imprecise or ambiguous. We propose a fuzzy Multidimensional Multiple-choice Knapsack Problem (MMKP) formulation for project portfolio selection. The proposed model is composed of an Efficient Epsilon-Constraint (EEC) method and a customized multi-objective evolutionary algorithm. A Data Envelopment Analysis (DEA) model is used to prune the generated solutions into a limited and manageable set of implementable alternatives. Statistical analysis is performed to investigate the effectiveness of the proposed approach in comparison with the competing methods in the literature. A case study is presented to demonstrate the applicability of the proposed model and exhibit the efficacy of the procedures and algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. The name is changed to protect the anonymity of the bank.

References

  • Aghezzaf, B., & Naimi, M. (2009). The two-stage recombination operator and its application to the multiobjective 0/1 knapsack problem: a comparative study. Computers & Operations Research, 36, 3247–3262.

    Article  Google Scholar 

  • Alves, M. J., & Almeida, M. (2007). MOTGA: a multiobjective Tchebycheff based genetic algorithm for the multidimensional knapsack problem. Computers & Operations Research, 34, 3458–3470.

    Article  Google Scholar 

  • Bas, E. (2011). A capital budgeting problem for preventing workplace mobbing by using analytic hierarchy process and fuzzy 0–1 bidimensional knapsack model. Expert Systems with Applications, 38(10), 12415–12422.

    Article  Google Scholar 

  • Beltrami, E., Katehakis, M. N., & Durinovic, S. (1985). Multiobjective Markov decision process in urban modeling. Mathematical Modelling, 6(4), 333–338.

    Article  Google Scholar 

  • Camargo, V. C. B., Mattiolli, L., & Toledo, F. M. B. (2012). A knapsack problem as a tool to solve the production planning problem in small foundries. Computers & Operations Research, 39(1), 86–92.

    Article  Google Scholar 

  • Chang, P. T., & Lee, J. H. (2012). A fuzzy DEA and knapsack formulation integrated model for project selection. Computers & Operations Research, 39(1), 112–125.

    Article  Google Scholar 

  • Chankong, V., & Haimes, Y. (1983). Multi-objective decision making theory and methodology. New York: Elsevier.

    Google Scholar 

  • Charnes, A., Cooper, W. W., & Rhodes, E. (1978). Measuring the efficiency of decision making units. European Journal of Operational Research, 2(6), 429–444.

    Article  Google Scholar 

  • Charnes, A., Cooper, W. W., Seiford, L. M., & Stutz, J. (1982). A multiplicative model for efficiency analysis. Socio-Economic Planning Sciences, 16, 223–224.

    Article  Google Scholar 

  • Cook, W. D., & Green, R. H. (2000). Project prioritization—a resource constrained data envelopment analysis approach. Socio-Economic Planning Sciences, 34(2), 85–99.

    Article  Google Scholar 

  • Crévits, I., Hanafi, S., Mansi, R., & Wilbaut, C. (2012). Iterative semi-continuous relaxation heuristics for the multiple-choice multidimensional knapsack problem. Computers & Operations Research, 39(1), 32–41.

    Article  Google Scholar 

  • Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A fast an elitist multi-objective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6, 182–197.

    Article  Google Scholar 

  • Durinovic, S., Lee, H. M., Katehakis, M. N., & Filar, J. A. (1986). Multiobjective Markov decision process with average reward criterion. Large Scale Systems, 10(3), 215–226.

    Google Scholar 

  • Eilat, H., Golany, B., & Shtub, A. (2006). Constructing and evaluating balanced portfolios of R&D projects with interactions: a DEA based methodology. European Journal of Operational Research, 172(3), 1018–1039.

    Article  Google Scholar 

  • Eilat, H., Golany, B., & Shtub, A. (2008). R&D project evaluation: an integrated DEA and balanced scorecard approach. Omega, 36(5), 895–912.

    Article  Google Scholar 

  • El-Mashaleh, M. S., Rababeh, S. M., & Hyari, K. H. (2010). Utilizing data envelopment analysis to benchmark safety performance of construction contractors. International Journal of Project Management, 28(1), 61–67.

    Article  Google Scholar 

  • Farris, J. A., Groesbeck, R. L., Aken, E. M. V., & Letens, G. (2006). Evaluating the relative performance of engineering design projects: a case study using data envelopment analysis. IEEE Transactions on Engineering Management, 53(3), 471–482.

    Article  Google Scholar 

  • Florios, K., Mavrotas, G., & Diakoulaki, D. (2010). Solving multiobjective, multiconstraint knapsack problems using mathematical programming and evolutionary algorithms. European Journal of Operational Research, 203, 14–21.

    Article  Google Scholar 

  • Ghapanchi, A. H., Tavana, M., Khakbaz, M. H., & Low, G. (2012). A methodology for selecting portfolios of projects with interactions and under uncertainty. International Journal of Project Management. doi:10.1016/j.ijproman.2012.01.012.

    Google Scholar 

  • Ghasemi, T., & Razzazi, M. (2011). Development of core to solve the multidimensional multiple-choice knapsack problem. Computers & Industrial Engineering, 60(2), 349–360.

    Article  Google Scholar 

  • Guo, P., & Tanaka, H. (2001). Fuzzy DEA: a perceptual evaluation method. Fuzzy Sets and Systems, 119(1), 149–160.

    Article  Google Scholar 

  • Han, B., Leblet, J., & Simon, G. (2010). Hard multidimensional multiple choice knapsack problems, an empirical study. Computers & Operations Research, 37(1), 172–181.

    Article  Google Scholar 

  • Hatami-Marbini, A., Saati, S., & Tavana, M. (2010). An ideal-seeking fuzzy data envelopment analysis framework. Applied Soft Computing, 10(4), 1062–1070.

    Article  Google Scholar 

  • Hatami-Marbini, A., Emrouznejad, A., & Tavana, M. (2011). A taxonomy and review of the fuzzy data envelopment analysis literature: two decades in the making. European Journal of Operational Research, 214, 457–472.

    Article  Google Scholar 

  • Hwang, C. L., & Masud, A. S. M. (1979). Multiple objective decision making methods and applications. New York: Springer.

    Book  Google Scholar 

  • Kao, C., & Liu, S. T. (2003). A mathematical programming approach to fuzzy efficiency ranking. International Journal of Production Economics, 86(2), 145–154.

    Article  Google Scholar 

  • Kellerer, H., Pferschy, U., & Pisinger, D. (2004). Knapsack problems. Berlin: Springer.

    Book  Google Scholar 

  • Khalili-Damghani, K., & Sadi-Nezhad, S. (2013). A decision support system for fuzzy multi-objective multi-period sustainable project selection. Computers & Industrial Engineering, 64, 1045–1060.

    Article  Google Scholar 

  • Khalili-Damghani, K., Sadi-Nezhad, S., & Aryanezhad, M. B. (2011). A modular decision support system for optimum investment selection in presence of uncertainty: combination of fuzzy mathematical programming and fuzzy rule based system. Expert Systems with Applications, 38, 824–834.

    Article  Google Scholar 

  • Khalili-Damghani, K., Tavana, M., & Sadi-Nezhad, S. (2012). An integrated multi-objective framework for solving multi-period project selection problems. Applied Mathematics and Computation, 219, 3122–3138.

    Article  Google Scholar 

  • Khalili-Damghani, K., Abtahi, A.-R., & Tavana, M. (2013a). A new multi-objective particle swarm optimization method for solving reliability redundancy allocation problems. Reliability Engineering & Systems Safety, 111, 58–75.

    Article  Google Scholar 

  • Khalili-Damghani, K., Sadi-Nezhad, S., Hosseinzadeh Lotfi, F., & Tavana, M. (2013b). A hybrid fuzzy rule-based multi-criteria framework for sustainable project portfolio selection. Information Sciences, 220, 442–462.

    Article  Google Scholar 

  • Khalili-Damghani, K., Tavana, M., & Nojavan, M. (2013c). Solving fuzzy multidimensional multiple-choice knapsack problems: the multi-start partial bound enumeration method versus the efficient epsilon-constraint method. Applied Soft Computing, 13, 1627–1638.

    Article  Google Scholar 

  • Lertworasirikul, S., Fang, S. C., Joines, J. A., & Nuttle, H. L. W. (2003). Fuzzy data envelopment analysis (DEA): a possibility approach. Fuzzy Sets and Systems, 139(2), 379–394.

    Article  Google Scholar 

  • Lin, F. T. (2008). Solving the knapsack problem with imprecise weight coefficients using genetic algorithm. European Journal of Operational Research, 185(1), 133–145.

    Article  Google Scholar 

  • Lin, F. T., & Yao, J. S. (2001). Using fuzzy numbers in knapsack problems. European Journal of Operational Research, 135(1), 158–176.

    Article  Google Scholar 

  • Martello, S., & Toth, P. (1990). Knapsack problems: algorithms and computer implementations. Wiley-Interscience series in discrete mathematics and optimization. Chichester: Wiley.

    Google Scholar 

  • Mavrotas, G. (2009). Effective implementation of the ε-constraint method in multi-objective mathematical programming problems. Applied Mathematics and Computations, 213, 455–465.

    Article  Google Scholar 

  • Mavrotas, G., Diakoulaki, D., & Kourentzis, A. (2008). Selection among ranked projects under segmentation, policy and logical constraints. European Journal of Operational Research, 187(1), 177–192.

    Article  Google Scholar 

  • Moreno, E., Espinoza, D., & Goycoolea, M. (2010). Large-scale multi-period precedence constrained knapsack problem: a mining application. Electronic Notes in Discrete Mathematics, 36(1), 407–414.

    Article  Google Scholar 

  • Saati, S., Memariani, A., & Jahanshahloo, G. R. (2002). Efficiency analysis and ranking of DMUs with fuzzy data. Fuzzy Optimization and Decision Making, 1, 255–267.

    Article  Google Scholar 

  • Sengupta, J. K. (1992). A fuzzy systems approach in data envelopment analysis. Computers and Mathematics with Applications, 24(8–9), 259–266.

    Article  Google Scholar 

  • Shah, R., & Reed, P. (2011). Comparative analysis of multiobjective evolutionary algorithms for random and correlated instances of multiobjective d-dimensional knapsack problems. European Journal of Operational Research, 211, 466–479.

    Article  Google Scholar 

  • Sowlati, T., Paradi, J. C., & Suld, C. (2005). Information systems project prioritization using data envelopment analysis. Mathematical and Computer Modeling, 41(11–12), 1279–1298.

    Article  Google Scholar 

  • Vitner, G., Rozenes, S., & Spreggett, S. (2006). Using data envelop analysis to compare project efficiency in a multi-project environment. International Journal of Project Management, 24(4), 323–329.

    Article  Google Scholar 

  • Xu, J., Zheng, H., Zeng, Z., Wu, S., & Shen, M. (2012). Discrete time–cost–environment trade-off problem for large-scale construction systems with multiple modes under fuzzy uncertainty and its application to Jinping-II Hydroelectric Project. International Journal of Project Management. doi:10.1016/j.ijproman.2012.01.019.

    Google Scholar 

  • Yu, X., & Gen, M. (2010). Introduction to evolutionary algorithms. London: Springer.

    Book  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous reviewers and the editor for their insightful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Madjid Tavana.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tavana, M., Khalili-Damghani, K. & Abtahi, AR. A fuzzy multidimensional multiple-choice knapsack model for project portfolio selection using an evolutionary algorithm. Ann Oper Res 206, 449–483 (2013). https://doi.org/10.1007/s10479-013-1387-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-013-1387-3

Keywords

Navigation