Skip to main content
Log in

A retrial inventory system with single and modified multiple vacation for server

  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

This paper considers a continuous review stochastic (s,S) inventory system with Poisson demand and exponentially distributed delivery time. The demands that occur during the stock out period or during the server vacation period enter into an orbit of infinite size. These orbiting demands retry to get satisfied by sending out signals so that the time durations are exponentially distributed. We consider two models which differ in the way that server go for vacation. The joint probability distribution of the inventory level, the number of demands in the orbit and the server status is obtained in the steady state case. Various system performance measures in the steady state is derived and the long-run total expected cost rate is calculated. Several numerical examples, which provide insight into the behaviour of the cost function, are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

e :

a column vector of appropriate dimension containing all ones.

\({\bf 0}\) :

a zero matrix of appropriate dimension.

\({\bf 0}_{(i,j)}\) :

a zero matrix with i rows and j columns.

I (n,n) :

Identity matrix of order n

H(x):

Heaviside function

δ ij :

Kronecker delta

\(\bar{\delta}_{ij}\) :

=1−δ ij

e s+1(1):

\(=\left (\begin{array}{c} 1 \\ 0 \\ \vdots\\ 0 \end{array} \right )_{(s+1, 1)}\)

\(\mathbf{e}^{T}_{s+1}(1)\) :

Transpose of e s+1(1)

References

  • Artalejo, J. R., Krishnamoorthy, A., & Lopez-Herrero, M. J. (2006). Numerical analysis of (s,S) inventory systems with repeated attempts. Annals of Operations Research, 141, 67–83.

    Article  Google Scholar 

  • Daniel, J. K., & Ramanarayanan, R. (1987). An inventory system with two servers and rest periods. In Cahiers du C.E.R.O (Vol. 29, pp. 95–100). Bruxelles: University Libre De Bruxelles

    Google Scholar 

  • Daniel, J. K., & Ramanarayanan, R. (1988). An (s,S) inventory system with rest periods to the server. In Naval research logistics (Vol. 35, pp. 119–123). New York: Wiley

    Google Scholar 

  • Doshi, B. T. (1986). Queueing systems with vacations: a survey. Queueing Systems, 1, 29–66.

    Article  Google Scholar 

  • Doshi, B. T. (1990). Single server queues with vacations. In H. Takage (Ed.), Stochastic analysis of computer and communication systems (pp. 217–265). Amstedam: Elsevier.

    Google Scholar 

  • Krishnamoorthy, A., & Jose, K. P. (2007). Comparison of inventory systems with service, positive lead-time, loss, and retrial of demands. Journal of Applied Mathematics and Stochastic Analysis, 2007, 1–23. Article ID 37848.

    Article  Google Scholar 

  • Manuel, P., Sivakumar, B., & Arivarignan, G. (2008). A perishable inventory system with service facilities and retrial customers. Computers & Industrial Engineering, 54(3), 484–501.

    Article  Google Scholar 

  • Narayanan, V. C., Deepak, T. G., Krishnamoorthy, A., & Krishnakumar, B. (2008). On an (s,S) inventory policy with service time, vacation to server and correlated lead time. Quality Technology & Quantitative Management, 5(2), 129–143.

    Google Scholar 

  • Neuts, M. F. (1994). Matrix-geometric solutions in stochastic models: an algorithmic approach. New York: Dover

    Google Scholar 

  • Sivakumar, B. (2008). Two-commodity inventory system with retrial demand. European Journal of Operational Research, 187(1), 70–83.

    Article  Google Scholar 

  • Sivakumar, B. (2009). A perishable inventory system with retrial demands and a finite population. Journal of Computational and Applied Mathematics, 224, 29–38.

    Article  Google Scholar 

  • Sivakumar, B. (2011). An inventory system with retrial demands and multiple server vacation. Quality Technology & Quantitative Management, 8(2), 125–146.

    Google Scholar 

  • Takagi, H. (1991). Queueing analysis—a foundation of performance evaluation (Vol. 1). Amstedam: Elsevier

    Google Scholar 

  • Takagi, H. (1993). Queueing analysis—a foundation of performance evaluation (Vol. 3). Amstedam: Elsevier

    Google Scholar 

  • Tian, N., & Zhang, Z. G. (2006). Vacation queueing models—theory and application. Berlin: Springer.

    Google Scholar 

  • Ushakumari, P. V. (2006). On (s,S) inventory system with random lead time and repeated demands. Journal of Applied Mathematics and Stochastic Analysis, 2006, 1–22. Article ID 81508.

    Article  Google Scholar 

  • Yadavalli, V. S. S., Sivakumar, B., Arivarignan, G., & Adetunji, O. (2011). A multi-server perishable inventory system with negative customer. Computers & Industrial Engineering, 61, 254–273.

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the anonymous referees for their comments, which significantly improved the presentation of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Sivakumar.

Additional information

The research of I. Padmavathi is supported by UGC-Rajiv Gandhi National Fellowship awarded No. F. 14-2(SC)/2010(SA-III).

The research of B. Sivakumar is supported by the SERB-Fast Track Young Scientist Scheme No. SR/FTP/MS-051/2011.

Appendices

Appendix A

To compute the R matrix, we use the following set of non-linear equations. This can be solved by using Gauss–Seidel iterative process. These equations are derived by exploiting the coefficient matrices appearing in (3),

$$\begin{aligned} r_{00'}\alpha-r_{00}(\lambda+\mu+\beta)+\lambda =&0, \\ r_{Q0'}\alpha-r_{Q0}(\lambda+\mu+\beta) =&0, \\ r_{0'0'}\alpha-r_{0'0}(\lambda+\mu+\beta) =&0, \end{aligned}$$
$$\begin{aligned} r_{00}\mu-r_{0Q}(\lambda+\beta) =&0, \\ r_{Q0}\mu-r_{QQ}(\lambda+\beta)+\lambda =&0, \\ r_{0'0}\mu-r_{0'Q}(\lambda+\beta) =&0, \end{aligned}$$
$$\begin{aligned} r_{00}r_{11}\theta+r_{0Q}r_{21} \theta+r_{00'}r_{31}\theta+r_{00} \beta-d_2r_{00'}+r_{11}\lambda =&0, \\ r_{Q0}r_{11}\theta+r_{QQ}r_{21} \theta+r_{Q0'}r_{31}\theta+r_{Q0} \beta-d_2r_{Q0'}+r_{21}\lambda =&0, \\ r_{0'0}r_{11}\theta+r_{0'Q}r_{21} \theta+r_{0'0'}r_{31}\theta+r_{0'0} \beta-d_2r_{0'0'}+r_{31}\lambda+\lambda =&0, \end{aligned}$$

For i=1,2,…,s,

$$\begin{aligned} r_{1(i+1)}\lambda+r_{00}r_{1(i+1)}\theta+r_{0Q}r_{2(i+1)} \theta+r_{00'}r_{3(i+1)}\theta =&r_{1i}d_3, \\ r_{2(i+1)}\lambda+r_{Q0}r_{1(i+1)}\theta+r_{QQ}r_{2(i+1)} \theta+r_{Q0'}r_{3(i+1)}\theta =&r_{2i}d_3, \\ r_{3(i+1)}\lambda+r_{0'0}r_{1(i+1)}\theta+r_{0'Q}r_{2(i+1)} \theta+r_{0'0'}r_{3(i+1)}\theta =&r_{3i}d_3, \end{aligned}$$

For i=s+1,s+2,…,Q−1,

$$\begin{aligned} r_{1(i+1)}\lambda+r_{00}r_{1(i+1)}\theta+r_{0Q}r_{2(i+1)} \theta+r_{00'}r_{3(i+1)}\theta =&r_{1i}d_4, \\ r_{2(i+1)}\lambda+r_{Q0}r_{1(i+1)}\theta+r_{QQ}r_{2(i+1)} \theta+r_{Q0'}r_{3(i+1)}\theta =&r_{2i}d_4, \\ r_{3(i+1)}\lambda+r_{0'0}r_{1(i+1)}\theta+r_{0'Q}r_{2(i+1)} \theta+r_{0'0'}r_{3(i+1)}\theta =&r_{3i}d_4, \end{aligned}$$

For i=Q,

$$\begin{aligned} r_{1(i+1)}\lambda+r_{00}r_{1(i+1)}\theta+r_{0Q}r_{2(i+1)} \theta+r_{00'}r_{3(i+1)}\theta+ r_{0Q} \beta+r_{00'}\mu =&r_{1i}d_4, \\ r_{2(i+1)}\lambda+r_{Q0}r_{1(i+1)}\theta+r_{QQ}r_{2(i+1)} \theta+r_{Q0'}r_{3(i+1)}\theta+ r_{QQ} \beta+r_{Q0'}\mu =&r_{2i}d_4, \\ r_{3(i+1)}\lambda+r_{0'0}r_{1(i+1)}\theta+r_{0'Q}r_{2(i+1)} \theta+r_{0'0'}r_{3(i+1)}\theta+ r_{0'Q} \beta+r_{0'0'}\mu =&r_{3i}d_4, \end{aligned}$$

For i=Q+1,Q+2,…,S−1,

$$\begin{aligned} r_{1(i+1)}\lambda+r_{00}r_{1(i+1)}\theta+r_{0Q}r_{2(i+1)} \theta+r_{00'}r_{3(i+1)}\theta+ r_{1(i-Q)} \mu =&r_{1i}d_4, \\ r_{2(i+1)}\lambda+r_{Q0}r_{1(i+1)}\theta+r_{QQ}r_{2(i+1)} \theta+r_{Q0'}r_{3(i+1)}\theta+ r_{2(i-Q)} \mu =&r_{2i}d_4, \\ r_{3(i+1)}\lambda+r_{0'0}r_{1(i+1)}\theta+r_{0'Q}r_{2(i+1)} \theta+r_{0'0'}r_{3(i+1)}\theta+ r_{3(i-Q)} \mu =&r_{3i}d_4, \end{aligned}$$

For i=S,

$$\begin{aligned} r_{1(i-Q)}\mu =&r_{1i}d_4, \\ r_{2(i-Q)}\mu =&r_{2i}d_4, \\ r_{3(i-Q)}\mu =&r_{3i}d_4, \end{aligned}$$

Appendix B

To compute the ϕ (0) vector, we use the following set of non-linear equations.

$$\begin{aligned} -\phi^{(0,0,0)}(\lambda+\mu+\beta)+\phi^{(0,1,0)}\alpha =&0, \\ \phi^{(0,0,0)}\mu-\phi^{(0,0,Q)}(\lambda+\beta) =&0, \\ \phi^{(0,0,0)}(\beta+r_{11}\theta)+\phi^{(0,0,Q)}r_{21} \theta+\phi^{(0,1,0)}(-d_2+r_{31}\theta)+ \phi^{(0,1,1)}\lambda =&0, \end{aligned}$$

For i=1,2,…,s,

$$\begin{aligned} \phi^{(0,0,0)}r_{1(i+1)}\theta+\phi^{(0,0,Q)}r_{2(i+1)} \theta+\phi^{(0,1,0)}r_{3(i+1)}\theta-\phi^{(0,1,i)}d_1 +\phi^{(0,1,i+1)}\lambda =&0, \end{aligned}$$

For i=s+1,s+2,…,Q−1,

$$\begin{aligned} \phi^{(0,0,0)}r_{1(i+1)}\theta+\phi^{(0,0,Q)}r_{2(i+1)} \theta+\phi^{(0,1,0)}r_{3(i+1)}\theta-\phi^{(0,1,i)} \lambda+ \phi^{(0,1,i+1)}\lambda =&0, \end{aligned}$$

For i=Q,

$$\begin{aligned} \phi^{(0,0,0)}r_{1(i+1)}\theta+\phi^{(0,0,Q)}(r_{2(i+1)} \theta+\beta)+\phi^{(0,1,0)}(r_{3(i+1)}\theta+\mu) - \phi^{(0,1,i)}\lambda \\ +\phi^{(0,1,i+1)}\lambda =&0, \end{aligned}$$

For i=Q+1,Q+2,…,S−1,

$$\begin{aligned} \phi^{(0,0,0)}r_{1(i+1)}\theta+\phi^{(0,0,Q)}r_{2(i+1)} \theta+\phi^{(0,1,0)}r_{3(i+1)}\theta-\phi^{(0,1,i)} \lambda+ \phi^{(0,1,i+1)}\lambda \\ +\phi^{(0,1,i-Q)}\mu =&0, \end{aligned}$$

For i=S,

$$\begin{aligned} -\phi^{(0,1,i)}\lambda+\phi^{(0,1,i-Q)}\mu =&0. \end{aligned}$$

Appendix C

To compute the \(\tilde{R}\) matrix, we use the following set of non-linear equations. This can be solved by using Gauss–Seidel iterative process. These equations are derived by exploiting the coefficient matrices appearing in (14),

$$\begin{aligned} \tilde{r}_{00}\tilde{r}_{11}\theta+\tilde{r}_{0Q} \tilde{r}_{21}\theta+\tilde{r}_{00'}\tilde{r}_{31} \theta+\tilde{r}_{11}\lambda-\tilde{r}_{00}(\lambda+\mu+ \beta)+\lambda =&0, \\ \tilde{r}_{Q0}\tilde{r}_{11}\theta+\tilde{r}_{QQ} \tilde{r}_{21}\theta+\tilde{r}_{Q0'}\tilde{r}_{31} \theta+\tilde{r}_{21}\lambda-\tilde{r}_{Q0}(\lambda+\mu+ \beta) =&0, \\ \tilde{r}_{0'0}\tilde{r}_{11}\theta+\tilde{r}_{0'Q} \tilde{r}_{21}\theta+\tilde{r}_{0'0'}\tilde{r}_{31} \theta+\tilde{r}_{11}\lambda-\tilde{r}_{0'0}(\lambda+\mu+ \beta) =&0, \end{aligned}$$
$$\begin{aligned} \tilde{r}_{00}\mu-\tilde{r}_{0Q}(\lambda+\beta) =&0, \\ \tilde{r}_{Q0}\mu-\tilde{r}_{QQ}(\lambda+\beta)+ \lambda =&0, \\ \tilde{r}_{0'0}\mu-\tilde{r}_{0'Q}(\lambda+\beta) =&0, \end{aligned}$$
$$\begin{aligned} \tilde{r}_{00}\beta-f_1\tilde{r}_{00'} =&0, \\ \tilde{r}_{Q0}\beta-f_1\tilde{r}_{Q0'} =&0, \\ \tilde{r}_{0'0}\beta-f_1\tilde{r}_{0'0'} \lambda =&0, \end{aligned}$$

For i=1,2,…,s,

$$\begin{aligned} \tilde{r}_{1(i+1)}\lambda+\tilde{r}_{00}\tilde{r}_{1(i+1)} \theta+\tilde{r}_{0Q}\tilde{r}_{2(i+1)}\theta+ \tilde{r}_{00'}\tilde{r}_{3(i+1)}\theta =&\tilde{r}_{1i}f_2, \\ \tilde{r}_{2(i+1)}\lambda+\tilde{r}_{Q0}\tilde{r}_{1(i+1)} \theta+\tilde{r}_{QQ}\tilde{r}_{2(i+1)}\theta+ \tilde{r}_{Q0'}\tilde{r}_{3(i+1)}\theta =&\tilde{r}_{2i}f_2, \\ \tilde{r}_{3(i+1)}\lambda+\tilde{r}_{0'0}\tilde{r}_{1(i+1)} \theta+\tilde{r}_{0'Q}\tilde{r}_{2(i+1)}\theta+ \tilde{r}_{0'0'}\tilde{r}_{3(i+1)}\theta =&\tilde{r}_{3i}f_2, \end{aligned}$$

For i=s+1,s+2,…,Q−1,

$$\begin{aligned} \tilde{r}_{1(i+1)}\lambda+\tilde{r}_{00}\tilde{r}_{1(i+1)} \theta+\tilde{r}_{0Q}\tilde{r}_{2(i+1)}\theta+ \tilde{r}_{00'}\tilde{r}_{3(i+1)}\theta =&\tilde{r}_{1i}f_3, \\ \tilde{r}_{2(i+1)}\lambda+\tilde{r}_{Q0}\tilde{r}_{1(i+1)} \theta+\tilde{r}_{QQ}\tilde{r}_{2(i+1)}\theta+ \tilde{r}_{Q0'}\tilde{r}_{3(i+1)}\theta =&\tilde{r}_{2i}f_3, \\ \tilde{r}_{3(i+1)}\lambda+\tilde{r}_{0'0}\tilde{r}_{1(i+1)} \theta+\tilde{r}_{0'Q}\tilde{r}_{2(i+1)}\theta+ \tilde{r}_{0'0'}\tilde{r}_{3(i+1)}\theta =&\tilde{r}_{3i}f_3, \end{aligned}$$

For i=Q,

$$\begin{aligned} \tilde{r}_{1(i+1)}\lambda+\tilde{r}_{00}\tilde{r}_{1(i+1)} \theta+\tilde{r}_{0Q}\tilde{r}_{2(i+1)}\theta+ \tilde{r}_{00'}\tilde{r}_{3(i+1)}\theta+ \tilde{r}_{0Q} \beta+\tilde{r}_{00'}\mu =&\tilde{r}_{1i}f_3, \\ \tilde{r}_{2(i+1)}\lambda+\tilde{r}_{Q0}\tilde{r}_{1(i+1)} \theta+\tilde{r}_{QQ}\tilde{r}_{2(i+1)}\theta+ \tilde{r}_{Q0'}\tilde{r}_{3(i+1)}\theta+ \tilde{r}_{QQ} \beta+\tilde{r}_{Q0'}\mu =&\tilde{r}_{2i}f_3, \\ \tilde{r}_{3(i+1)}\lambda+\tilde{r}_{0'0}\tilde{r}_{1(i+1)} \theta+\tilde{r}_{0'Q}\tilde{r}_{2(i+1)}\theta+ \tilde{r}_{0'0'}\tilde{r}_{3(i+1)}\theta+ \tilde{r}_{0'Q} \beta+\tilde{r}_{0'0'}\mu =&\tilde{r}_{3i}f_3, \end{aligned}$$

For i=Q+1,Q+2,…,S−1,

$$\begin{aligned} \tilde{r}_{1(i+1)}\lambda+\tilde{r}_{00}\tilde{r}_{1(i+1)} \theta+\tilde{r}_{0Q}\tilde{r}_{2(i+1)}\theta+ \tilde{r}_{00'}\tilde{r}_{3(i+1)}\theta+ \tilde{r}_{1(i-Q)} \mu =&\tilde{r}_{1i}f_3, \\ \tilde{r}_{2(i+1)}\lambda+\tilde{r}_{Q0}\tilde{r}_{1(i+1)} \theta+\tilde{r}_{QQ}\tilde{r}_{2(i+1)}\theta+ \tilde{r}_{Q0'}\tilde{r}_{3(i+1)}\theta+ \tilde{r}_{2(i-Q)} \mu =&\tilde{r}_{2i}f_3, \\ \tilde{r}_{3(i+1)}\lambda+\tilde{r}_{0'0}\tilde{r}_{1(i+1)} \theta+\tilde{r}_{0'Q}\tilde{r}_{2(i+1)}\theta+ \tilde{r}_{0'0'}\tilde{r}_{3(i+1)}\theta+ \tilde{r}_{3(i-Q)} \mu =&\tilde{r}_{3i}f_3, \end{aligned}$$

For i=S,

$$\begin{aligned} \tilde{r}_{1(i-Q)}\mu =&\tilde{r}_{1i}f_3, \\ \tilde{r}_{2(i-Q)}\mu =&\tilde{r}_{2i}f_3, \\ \tilde{r}_{3(i-Q)}\mu =&\tilde{r}_{3i}f_3, \end{aligned}$$

Appendix D

To compute the ψ (0) vector, we use the following set of non-linear equations.

$$\begin{aligned} \psi^{(0,0,0)}\bigl(\tilde{r}_{11}\theta-(\lambda+\mu+\beta) \bigr)+\psi^{(0,0,Q)}\tilde{r}_{21}\theta+\psi^{(0,1,0)} \tilde{r}_{31}\theta+\psi^{(0,1,1)}\lambda =&0, \\ \psi^{(0,0,0)}\mu-\psi^{(0,0,Q)}(\lambda+\beta) =&0, \\ \psi^{(0,0,0)}\beta-\psi^{(0,1,0)}f_1 =&0, \end{aligned}$$

For i=1,2,…,s,

$$\begin{aligned} \psi^{(0,0,0)}\tilde{r}_{1(i+1)}\theta+\psi^{(0,0,Q)} \tilde{r}_{2(i+1)}\theta+\psi^{(0,1,0)}\tilde{r}_{3(i+1)} \theta-\psi^{(0,1,i)}f_1 +\psi^{(0,1,i+1)}\lambda =&0, \end{aligned}$$

For i=s+1,s+2,…,Q−1,

$$\begin{aligned} \psi^{(0,0,0)}\tilde{r}_{1(i+1)}\theta+\psi^{(0,0,Q)} \tilde{r}_{2(i+1)}\theta+\psi^{(0,1,0)}\tilde{r}_{3(i+1)} \theta-\psi^{(0,1,i)}\lambda+\psi^{(0,1,i+1)}\lambda =&0, \end{aligned}$$

For i=Q,

$$\begin{aligned} \psi^{(0,0,0)}\tilde{r}_{1(i+1)}\theta+\psi^{(0,0,Q)}( \tilde{r}_{2(i+1)}\theta+\beta)+\psi^{(0,1,0)}(\tilde{r}_{3(i+1)} \theta+\mu)-\psi^{(0,1,i)}\lambda \\ +\psi^{(0,1,i+1)}\lambda =&0, \end{aligned}$$

For i=Q+1,Q+2,…,S−1,

$$\begin{aligned} \psi^{(0,0,0)}\tilde{r}_{1(i+1)}\theta+\psi^{(0,0,Q)} \tilde{r}_{2(i+1)}\theta+\psi^{(0,1,0)}\tilde{r}_{3(i+1)} \theta-\psi^{(0,1,i)}\lambda+\psi^{(0,1,i+1)}\lambda \\ +\psi^{(0,1,i-Q)}\mu =&0, \end{aligned}$$

For i=S,

$$-\psi^{(0,1,i)}\lambda+\psi^{(0,1,i-Q)}\mu=0. $$

Rights and permissions

Reprints and permissions

About this article

Cite this article

Padmavathi, I., Sivakumar, B. & Arivarignan, G. A retrial inventory system with single and modified multiple vacation for server. Ann Oper Res 233, 335–364 (2015). https://doi.org/10.1007/s10479-013-1417-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-013-1417-1

Keywords