Skip to main content

Advertisement

Log in

A robust optimization model for agile and build-to-order supply chain planning under uncertainties

  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

Supply chain planning as one of the most important processes within the supply chain management concept, has a great impact on firms’ success or failure. This paper considers a supply chain planning problem of an agile manufacturing company operating in a build-to-order environment under various kinds of uncertainty. An integrated optimization approach of procurement, production and distribution costs associated with the supply chain members has been taken into account. A robust optimization scenario-based approach is used to absorb the influence of uncertain parameters and variables. The formulation is a robust optimization model with the objective of minimizing the expected total supply chain cost while maintaining customer service level. The developed multi-product, multi-period, multi-echelon robust mixed-integer linear programming model is then solved using the CPLEX optimization studio and guidance related to future areas of research is given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ahumada, O., & Villalobos, J. R. (2011). A tactical model for planning the production and distribution of fresh produce. Annals of Operations Research, 190(1), 339–358.

    Article  Google Scholar 

  • Al-e-Hashem, S. M. J. M., Malekly, H., & Aryanezhad, M. B. (2011). A multi-objective robust optimization model for multi-product multi-site aggregate production planning in a supply chain under uncertainty. International Journal of Production Economics, 134(1), 28–42.

    Article  Google Scholar 

  • Aliev, R. A., Fazlollahi, B., Guirimov, B. G., & Aliev, R. R. (2007). Fuzzy-genetic approach to aggregate production-distribution planning in supply chain management. Information Sciences, 177(20), 4241–4255.

    Article  Google Scholar 

  • Azaron, A., Brown, K. N., Tarim, S. A., & Modarres, M. (2008). A multi-objective stochastic programming approach for supply chain design considering risk. International Journal of Production Economics, 116(1), 129–138.

    Article  Google Scholar 

  • Beamon, B. M. (1998). Supply chain design and analysis: models and methods. International Journal of Production Economics, 55(3), 281–294.

    Article  Google Scholar 

  • Che, Z. H., & Chiang, C. J. (2010). A modified Pareto genetic algorithm for multi-objective build-to-order supply chain planning with product assembly. Advances in Engineering Software, 41(7–8), 1011–1022.

    Article  Google Scholar 

  • Chen, C. L., & Lee, W. C. (2004). Multi-objective optimization of multi-echelon supply chain networks with uncertain product demands and prices. Computers & Chemical Engineering, 28(6–7), 1131–1144.

    Article  Google Scholar 

  • Chen, C. L., Wang, B. W., & Lee, W. C. (2003). Multi objective optimization for a multi enterprise supply chain network. Industrial & Engineering Chemistry Research, 42(9), 1879–1889.

    Article  Google Scholar 

  • Chen, S. P., & Chang, P. C. (2006). A mathematical programming approach to supply chain models with fuzzy parameters. Engineering Optimization, 38(6), 647–669.

    Article  Google Scholar 

  • Choi, T. M., & Chow, P. S. (2008). Mean-variance analysis of quick response program. International Journal of Production Economics, 114(2), 456–475.

    Article  Google Scholar 

  • Chow, P. S., Choi, T. M., & Cheng, T. C. E. (2012). Impacts of minimum order quantity on a quick response supply chain. IEEE Transactions on Systems, Man and Cybernetics. Part A. Systems and Humans, 42(4), 868–879.

    Article  Google Scholar 

  • Davis, T. (1993). Effective supply chain management. Sloan Management Review, 34(4), 35–46.

    Google Scholar 

  • Demirli, K., & Yimer, A. D. (2008). Fuzzy scheduling of a build-to-order supply chain. International Journal of Production Research, 46(14), 3931–3958.

    Article  Google Scholar 

  • Feng, Y., D’Amours, S., & Beauregard, R. (2008). The value of sales and operations planning in oriented strand board industry with make-to-order manufacturing system: cross functional integration under deterministic demand and spot market recourse. International Journal of Production Economics, 115(1), 189–209.

    Article  Google Scholar 

  • Galasso, F., Merce, C., & Grabot, B. (2008). Decision support for supply chain planning under uncertainty. International Journal of Systems Science, 39(7), 667–675.

    Article  Google Scholar 

  • Galbraith, J. (1973). Designing complex organizations. Boston: Addison-Wesley/Longman.

    Google Scholar 

  • Gupta, A., & Maranas, C. D. (2000). A two-stage modeling and solution framework for multisite midterm planning under demand uncertainty. Industrial & Engineering Chemistry Research, 39(10), 3799–3813.

    Article  Google Scholar 

  • Gupta, A., & Maranas, C. D. (2003). Managing demand uncertainty in supply chain planning. Computers & Chemical Engineering, 27(8–9), 1219–1227.

    Article  Google Scholar 

  • Ho, C. (1989). Evaluating the impact of operating environments on MRP system nervousness. International Journal of Production Research, 27(7), 1115–1135.

    Article  Google Scholar 

  • Kanyalkar, A. P., & Adil, G. K. (2010). A robust optimization model for aggregate and detailed planning of a multi-site procurement-production-distribution system. International Journal of Production Research, 48(3), 635–656.

    Article  Google Scholar 

  • Katayama, H., & Bennett, D. (1999). Agility, adaptability and leanness: a comparison of concepts and a study of practice. International Journal of Production Economics, 60–61, 43–51.

    Article  Google Scholar 

  • Kidd, P. T. (1994). Agile manufacturing: forging new frontiers. Boston: Addison-Wesley/Longman.

    Google Scholar 

  • Krajewski, L., Wei, J. C., & Tang, L. L. (2005). Responding to schedule changes in build-to-order supply chains. Journal of Operations Management, 23(5), 452–469.

    Article  Google Scholar 

  • Leung, S. C. H., Tsang, S. O. S., Ng, W. L., & Wu, Y. (2007). A robust optimization model for multi-site production planning problem in an uncertain environment. European Journal of Operational Research, 181(1), 224–238.

    Article  Google Scholar 

  • Liao, S. H., Hsieh, C. L., & Lin, Y. S. (2011). A multi-objective evolutionary optimization approach for an integrated location-inventory distribution network problem under vendor-managed inventory systems. Annals of Operations Research, 186(1), 213–229.

    Article  Google Scholar 

  • Liu, N., Choi, T. M., Yuen, C. W. M., & Ng, F. (2012). Optimal pricing, modularity, and return policy under mass customization. IEEE Transactions on Systems, Man and Cybernetics. Part A. Systems and Humans, 42(3), 604–614.

    Article  Google Scholar 

  • McDonald, C. M., & Karimi, I. (1997). Planning and scheduling of parallel semi continuous processes. 1. Production planning. Industrial & Engineering Chemistry Research, 36(7), 2691–2700.

    Article  Google Scholar 

  • Min, H., & Zhou, G. G. (2002). Supply chain modeling: past, present and future. Computers & Industrial Engineering, 43(1–2), 231–249.

    Article  Google Scholar 

  • Mohammadi Bidhandi, H., Yusuff, R. M., Megat Ahmad, M. M. H., & Abu Bakar, M. R. (2009). Development of a new approach for deterministic supply chain network design. European Journal of Operational Research, 198(1), 121–128.

    Article  Google Scholar 

  • Mohammadi Bidhandi, H., & Yusuff, R. M. (2011). Integrated supply chain planning under uncertainty using an improved stochastic approach. Applied Mathematical Modelling, 35(6), 2618–2630.

    Article  Google Scholar 

  • Mula, J., Poler, R., Garcıa-Sabater, J. P., & Lario, F. C. (2006). Models for production planning under uncertainty: a review. International Journal of Production Economics, 103(1), 271–285.

    Article  Google Scholar 

  • Mulvey, J. M., Vanderbei, R. J., & Zenios, S. A. (1995). Robust optimization of large-scale systems. Operations Research, 43(2), 264–281.

    Article  Google Scholar 

  • Nagar, L., & Jain, K. (2008). Supply chain planning using multi-stage stochastic programming. Supply Chain Management, 13(3), 251–256.

    Article  Google Scholar 

  • Pal, A., Chan, F. T. S., Mahanty, B., & Tiwari, M. K. (2011). Aggregate procurement, production, and shipment planning decision problem for a three-echelon supply chain using swarm-based heuristics. International Journal of Production Research, 49(10), 2873–2905.

    Article  Google Scholar 

  • Pan, A., & Choi, T. M. (2013). An agent-based negotiation model on price and delivery date in a fashion supply chain. Annals of Operations Research. doi:10.1007/s10479-013-1327-2.

    Google Scholar 

  • Peidro, D., Mula, J., Poler, R., & Verdegay, J. L. (2009). Fuzzy optimization for supply chain planning under supply, demand and process uncertainties. Fuzzy Sets and Systems, 160(18), 2640–2657.

    Article  Google Scholar 

  • Petrovic, D., Roy, R., & Petrovic, R. (1998). Modelling and simulation of a supply chain in an uncertain environment. European Journal of Operational Research, 109(2), 299–309.

    Article  Google Scholar 

  • Prasad, S., Tata, J., & Madan, M. (2005). Build to order supply chains in developed and developing countries. Journal of Operations Management, 23(5), 551–568.

    Article  Google Scholar 

  • Pyke, D. F., & Cohen, M. A. (1994). Multiproduct integrated production-distribution systems. European Journal of Operational Research, 74(1), 18–49.

    Article  Google Scholar 

  • Sen, W., Pokharel, S., & YuLei, W. (2004). Supply chain positioning strategy integration, evaluation, simulation, and optimization. Computers & Industrial Engineering, 46(4), 781–792.

    Article  Google Scholar 

  • Sharma, A., & LaPlaca, P. (2005). Marketing in the emerging era of build-to-order manufacturing. Industrial Marketing Management, 34(5), 476–486.

    Article  Google Scholar 

  • Torabi, S. A., & Hassini, E. (2008). An interactive possibilistic programming approach for multiple objective supply chain master planning. Fuzzy Sets and Systems, 159(2), 193–214.

    Article  Google Scholar 

  • Van Landeghem, H., & Vanmaele, H. (2002). Robust planning: a new paradigm for demand chain planning. Journal of Operations Management, 20(6), 769–783.

    Article  Google Scholar 

  • Viergutz, C., & Knust, S. (2012). Integrated production and distribution scheduling with lifespan constraints. Annals of Operations Research. doi:10.1007/s1479-012-1197-z.

    Google Scholar 

  • Volling, T., & Spengler, T. S. (2011). Modeling and simulation of order-driven planning policies in build-to-order automobile production. International Journal of Production Economics, 131(1), 183–193.

    Article  Google Scholar 

  • Wallace, S. W., & Choi, T. M. (2011). Robust supply chain management. International Journal of Production Economics, 134(2), 283.

    Article  Google Scholar 

  • Yimer, A. D., & Demirli, K. (2010). A genetic approach to two-phase optimization of dynamic supply chain scheduling. Computers & Industrial Engineering, 58(3), 411–422.

    Article  Google Scholar 

  • You, F., & Grossmann, I. E. (2011). Multicut Benders decomposition algorithm for process supply chain planning under uncertainty. Annals of Operations Research. doi:10.1007/s10479-011-0974-4.

    Google Scholar 

  • You, F., Wassick, J. M., & Grossmann, I. E. (2009). Risk management for a global supply chain planning under uncertainty: models and algorithms. AIChE Journal, 55(4), 931–946.

    Article  Google Scholar 

  • Yu, C., & Li, H. (2000). A robust optimization model for stochastic logistic problems. International Journal of Production Economics, 64(1–3), 385–397.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kannan Govindan.

Appendix

Appendix

The demand data under different scenarios in each time period are shown in Tables 18, 19, 20 and 21. Parameters such as raw material supply cost, component fabrication cost and product assembly cost in both regular time and overtime, transportation cost, inventory holding cost, backorder cost, fabrication capacity and production capacity in both regular time and overtime, fabrication and assembly process time, procurement lead time, maximum supply and inventory capacity, minimum allowable demand fulfillment rate, etc are also shown in Tables 2228. It should be mentioned that the data related to demand, and regular time and overtime capacities are shown for every planning period while the other data are assumed to be similar throughout the entire planning horizon.

Table 18 Market demand for customer zone 1 under each scenario/\(D_{pct}^{s}\)
Table 19 Market demand for customer zone 2 under each scenario/\(D_{pct}^{s}\)
Table 20 Market demand for customer zone 3 under each scenario/\(D_{pct}^{s}\)
Table 21 Market demand for customer zone 4 under each scenario/\(D_{pct}^{s}\)
Table 22 Final product related data
Table 23 Final product transportation cost and inventory capacity
Table 24 Raw material related data
Table 25 Component related data
Table 26 Raw material transportation cost
Table 27 Raw material usage, component usage and production process time
Table 28 Available regular time, overtime, procurement lead time and demand fulfillment

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lalmazloumian, M., Wong, K.Y., Govindan, K. et al. A robust optimization model for agile and build-to-order supply chain planning under uncertainties. Ann Oper Res 240, 435–470 (2016). https://doi.org/10.1007/s10479-013-1421-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-013-1421-5

Keywords

Navigation