Skip to main content
Log in

Heuristics for integrated optimization of catheter positioning and dwell time distribution in prostate HDR brachytherapy

  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

High dose-rate (HDR) brachytherapy is one kind of radiotherapy used to treat different forms of cancer, such as prostate cancer. When this treatment is used for prostate cancer, a radioactive source is moved through catheters implanted into the prostate. For each patient, a treatment plan is constructed. This plan determines for example catheter positions and dwell time distribution, that is, where to the radioactive source should stop and for how long.

Mathematical optimization methods have been used to find dwell time distributions of high quality; however few optimization approaches that concern catheter positioning have been studied. In this article we present an integrated model that optimizes catheter positioning and dwell time distribution simultaneously. Our results show that integrating the catheter positioning yields a large reduction of the dwell time distribution objective value (15–94 %) and slight improvements in clinical quality measures.

Since the presented model is computationally demanding to solve, we also present three heuristics: a tabu search, a variable neighbourhood search and a genetic algorithm. Of these, variable neighbourhood search is the best, and out-performs a state-of-the-art optimization software (CPLEX) and the two other heuristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Alterovitz, R., Lessard, E., Pouliot, J., Hsu, I. C. J., O’Brien, J. F., & Goldberg, K. (2006). Optimization of HDR brachytherapy dose distributions using linear programming with penalty costs. Medical Physics, 33(11), 4012–4019.

    Article  Google Scholar 

  • Ayotte, G., D’Amours, M., Aubin, S., Lessard, E., Pouliot, J., & Beaulieu, L. (2009). Sci-Thurs AM: YIS-02: optimizing number and position of catheters within inverse planning simulated annealing (IPSA) for prostate and breast high dose rate brachytherapy. In AAPM (Vol. 36, p. 4315).

    Google Scholar 

  • Baltas, D., Katsilieri, Z., Kefala, V., Papaioannou, S., Karabis, A., Mavroidis, P., & Zamboglou, N. (2009). Influence of modulation restriction in inverse optimization with HIPO of prostate implants on plan quality: analysis using dosimetric and radiobiological indices. In R. Magjarevic, O. Dössel, & W. C. Schlegel (Eds.), IFMBE proceedings: Vol. 25. World congress on medical physics and biomedical engineering, 7–12 September 2009, Munich, Germany (pp. 283–286).

    Google Scholar 

  • Baltas, D., Colla, E., Karabis, A., & Kirisits, C. Optimization and inverse planning tools in oncentra gyn. http://www.nucletron.com/en/ProductsAndSolutions/Pages/OncentraGYN.aspx. Downloaded 2010.

  • Boyle, P. & Levin, B. (Eds.) (2008). World cancer report 2008. Lyon: International Agency for Research on Cancer.

    Google Scholar 

  • Chajon, E., Dumas, I., Touleimat, M., Magné, N., Coulot, J., Verstraet, R., Lefkopoulos, D., & Haie-Meder, C. (2007). Inverse planning approach for 3-D MRI-based pulse-dose rate intracavitary brachytherapy in cervix cancer. International Journal of Radiation Oncology, Biology, Physics, 69(3), 955–961.

    Article  Google Scholar 

  • Glover, F., & Laguna, M. (1997). Tabu search. Norwell: Kluwer Academic.

    Book  Google Scholar 

  • Hansen, P., & Mladenović, N. (2005). Variable neighborhood search. In E. K. Burke & G. Kendall (Eds.), Search methodologies (pp. 211–238). New York: Springer.

    Chapter  Google Scholar 

  • Holm, Å., Larsson, T., & Carlsson Tedgren, Å. (2012). Impact of using linear optimization models in dose planning for HDR brachytherapy. Medical Physics, 39(2), 1021–1028.

    Article  Google Scholar 

  • Karabis, A., Belotti, P., & Baltas, D. (2009). Optimization of catheter position and dwell time in prostate HDR brachytherapy using HIPO and linear programming. In R. Magjarevic, O. Dössel, & W. C. Schlegel (Eds.), IFMBE proceedings: Vol. 25. World congress on medical physics and biomedical engineering, 7–12 September 2009, Munich, Germany (pp. 612–615). Berlin: Springer.

    Google Scholar 

  • Kovács, G., Pötter, R., Loch, T., Hammer, J., Kolkman-Deurloo, I. K., de la Rosette, J. J., & Bertermann, H. (2005). GEC/ESTRO-EAU recommendations on temporary brachytherapy using stepping sources for localised prostate cancer. Radiotherapy and Oncology, 74(2), 137–148.

    Article  Google Scholar 

  • Lahanas, M., Baltas, D., Giannouli, S., Milickovic, N., & Zamboglou, N. (2000). Generation of uniformly distributed dose points for anatomy-based three-dimensional dose optimization methods in brachytherapy. Medical Physics, 27(5), 1034–1046.

    Article  Google Scholar 

  • Lahanas, M., Baltas, D., & Zamboglou, N. (2003). A hybrid evolutionary algorithm for multi-objective anatomy-based dose optimization in high-dose-rate brachytherapy. Physics in Medicine and Biology, 48(3), 399–415.

    Article  Google Scholar 

  • Lessard, E., & Pouliot, J. (2001). Inverse planning anatomy-based dose optimization for HDR-brachytherapy of the prostate using fast simulated annealing algorithm and dedicated objective function. Medical Physics, 28(5), 773–779.

    Article  Google Scholar 

  • Reeves, C. R. (2005). Fitness landscapes. In E. K. Burke & G. Kendall (Eds.), Search methodologies (pp. 587–610). New York: Springer.

    Chapter  Google Scholar 

  • Rivard, M. J., Coursey, B. M., DeWerd, L. A., Hanson, W. F., Huq, M. S., Ibbott, G. S., Mitch, M. G., Nath, R., & Williamson, J. F. (2004). Update of AAPM task group no. 43 report: a revised AAPM protocol for brachytherapy dose calculations. Medical Physics, 31(3), 633–674.

    Article  Google Scholar 

  • Ruotsalainen, H., Miettinen, K., Palmgren, J. E., & Lahtinen, T. (2010). Interactive multiobjective optimization for anatomy-based three-dimensional HDR brachytherapy. Physics in Medicine and Biology, 55(16), 4703–4719.

    Article  Google Scholar 

  • Russell, K. R., Carlsson Tedgren, Å., & Ahnesjö, A. (2005). Brachytherapy source characterization for improved dose calculations using primary and scatter dose separation. Medical Physics, 32(9), 2739–2752.

    Article  Google Scholar 

  • Sastry, K., Goldberg, D., & Kendall, G. (2005). Genetic algorithms. In E. K. Burke & G. Kendall (Eds.), Search methodologies (pp. 97–125). Berlin: Springer.

    Chapter  Google Scholar 

  • Siauw, T., Cunha, A., Atamturk, A., Hsu, I. C., Pouliot, J., & Goldberg, K. (2011). IPIP: a new approach to inverse planning for HDR brachytherapy by directly optimizing dosimetric indices. Medical Physics, 38(7), 4045–4051.

    Article  Google Scholar 

  • Siauw, T., Cunha, A., Berenson, D., Atamturk, A., Hsu, I. C., Goldberg, K., & Pouliot, J. (2012). NPIP: a skew line needle configuration optimization system for HDR brachytherapy. Medical Physics, 39(7), 4339–4346.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Åsa Holm.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holm, Å., Carlsson Tedgren, Å. & Larsson, T. Heuristics for integrated optimization of catheter positioning and dwell time distribution in prostate HDR brachytherapy. Ann Oper Res 236, 319–339 (2016). https://doi.org/10.1007/s10479-013-1448-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-013-1448-7

Keywords

Navigation